
UNIVERSIDAD
REY JUAN CARLOS

Máster Universitario en Software Libre

Curso Académico 2011/2012

Proyecto Fin de Máster

Translations in Libre Software

Autor: Laura Arjona Reina

Tutor: Dr. Gregorio Robles

Agradecimientos

A Gregorio Robles y el equipo de Libresoft en la Universidad Rey Juan Carlos,

por sus consejos, tutorı́a y acompañamiento en este trabajo

y la enriquecedora experiencia que ha supuesto estudiar este Máster.

A mi familia, por su apoyo y paciencia.

Dedicatoria

Para mi sobrino Darı́o

(C) 2012 Laura Arjona Reina. Some rights reserved.

This document is distributed under the Creative Commons Attribution-ShareAlike 3.0 license,

available in http://creativecommons.org/licenses/by-sa/3.0/

Source files for this document are available at

http://gitorious.org/mswl-larjona-docs

http://creativecommons.org/licenses/by-sa/3.0/
http://gitorious.org/mswl-larjona-docs

4

Contents

1 Introduction 17

1.1 Terminology . 17

1.1.1 Internationalization, localization, translation 17

1.1.2 Free, libre, open source software . 18

1.1.3 Free culture, freedom definition, creative commons 20

1.2 About this document . 21

1.2.1 Structure of the document . 21

1.2.2 Scope . 22

1.2.3 Methodology . 22

2 Goals and objectives 23

2.1 Goals . 23

2.2 Objectives . 23

2.2.1 Explain the phases of localization process 24

2.2.2 Analyze the benefits and counterparts 24

2.2.3 Provide case studies of libre software projects and tools 24

2.2.4 Present personal experiences . 24

3 Localization in libre software projects 25

3.1 Localization workflow . 25

3.2 Prepare: Defining objects to be localized . 27

3.2.1 Some examples . 28

3.3 Internationalize: Setting up the i18n platform 28

3.3.1 Used and accepted file formats for localization 29

5

6 CONTENTS

3.3.2 Collaborative models and tools to approach l10n tasks 30

3.3.3 Some examples . 32

3.4 Localize: Setting up the l10n platform . 33

3.4.1 Web platforms for supporting translation 33

3.4.2 Some examples . 34

3.5 Maintenance and Quality Assurance . 35

3.5.1 Some examples . 36

3.6 Who are the translators? . 36

4 Benefits 39

4.1 Benefits for the libre software community . 39

4.1.1 Extra features with not much extra workload 39

4.1.2 Sustainability: Increase market share and demand for services 39

4.1.3 Ease the integration of localization made by others 39

4.1.4 Localization as a way of recruiting . 40

4.1.5 Standardization in localization, for recruiting professional translators . 40

4.2 Business opportunities . 41

4.2.1 Translation companies completing the community work 41

4.2.2 Services on libre software translation tools 41

4.2.3 Localization tools as free software: a new market to explore 42

4.3 Social benefits . 43

4.3.1 Reduce the digital gap . 43

4.3.2 Develop and promote minority languages 43

4.3.3 Localization results as free culture works 43

5 Problems and challenges 45

5.1 Internationalization problems . 45

5.2 Division of work and coordination problems 46

5.3 Crowdsourcing and quality of translations . 46

6 Case Studies 49

6.1 Internationalization tools . 49

CONTENTS 7

6.1.1 Gettext . 49

6.2 Translation tools . 53

6.2.1 Text editor extensions . 53

6.2.2 Poedit . 53

6.2.3 Virtaal . 53

6.2.4 Gtranslator . 54

6.2.5 Lokalize . 54

6.2.6 Plugins or built-in localization tools 54

6.3 Web frameworks for crowdsourcing translation 55

6.3.1 Pootle . 55

6.3.2 Weblate . 59

6.3.3 Transifex . 61

6.3.4 Launchpad Translations (Rosetta) . 63

6.3.5 Drupal localization system . 65

6.4 Translation projects and teams . 67

6.4.1 GNOME . 67

6.4.2 KDE . 69

6.4.3 Debian . 70

6.4.4 Tux Paint . 72

6.4.5 Pleft . 74

6.4.6 The power of open: The Debian Administration Handbook 75

7 Conclusions 79

7.1 Evaluation . 79

7.2 Lessons learned . 80

7.2.1 Key aspects of localization in libre software projects 80

7.2.2 What did I learn . 80

7.2.3 Knowledge and skills acquired in the M.Sc. studies that helped me on

this work . 81

7.3 Future work . 82

7.3.1 More on localization results as free culture works 82

8 CONTENTS

7.3.2 Apply libre software techniques to cultural works localization 82

7.3.3 Mining for localization in libre software projects 83

A Libre software tools for localization 85

B Interviews to translators 87

B.1 Miguel Vidal, OpenBSD Spanish Documentation 87

B.2 Pedro Garcı́a, Support Mozilla Messaging (SuMoMo) 89

B.3 Albert Astals, KDE . 90

B.4 Javier Taravilla, debian-l10n-es team . 92

C Contributing to translations: a personal experience 95

C.1 Introduction . 95

C.2 PHPScheduleIt and Drupal 5 . 95

C.3 Drupal 7: contributing translations easily . 97

C.4 Pleft . 98

C.5 F-Droid . 100

C.6 Android applications . 102

C.6.1 Trolly and E-numbers . 102

C.6.2 Speech Trainer . 102

C.7 Future plans . 103

D Mining for localization in libre software projects 105

D.1 General overview of the process . 105

D.1.1 Metrics to extract . 105

D.2 SQL queries . 106

D.3 Results . 107

Bibliography 111

List of Figures

1.1 Software Licenses and Localization . 20

3.1 Document Localization Life-cycle . 26

3.2 A gettext catalog opened with a text editor, and with Poedit 34

3.3 An XLIFF sample file opened with a text editor and with Virtaal 35

6.1 Files handled by GNU gettext and tools acting on them 50

6.2 Comparison between Poedit, Gtranslator, and Lokalize (by Ohloh.net) 55

6.3 Overview of a Pootle server (1) . 56

6.4 Overview of a Pootle server (2) . 56

6.5 The localization of the Pootle software . 58

6.6 Translation of PHPMyAdmin documentation to Greek, using Weblate 60

6.7 Pricing plans in Transifex . 62

6.8 Launchpad suggestions from other projects 64

6.9 Launchpad translation statistics . 64

6.10 Overview of Pleft translations in Transifex . 76

6.11 Information about Translations in the Debian Administration Handbook’s website 77

9

10 LIST OF FIGURES

List of Tables

3.1 Internationalization file formats . 31

6.1 Summary of Drupal localization . 65

6.2 Summary of GNOME localization . 68

6.3 Summary of KDE localization . 69

6.4 Summary of Debian localization . 71

6.5 Summary of Tux Paint localization . 73

6.6 Summary of Pleft localization . 74

A.1 List of the localization tools analyzed in this work 85

A.2 List of other localization tools . 86

D.1 Some metrics in Tux Paint modules . 108

D.2 Commits from translators in Tux Paint (main module) 109

11

12 LIST OF TABLES

Summary

Libre software licenses allow to modify the program and distribute the derived work, so users

of libre software may translate it to their desired language or dialect.

In this report we will analyze this legal freedom and its technical viability, provided by

accessing the source code and the use of different internationalization guides, programs and

platforms that libre software developers have created to help software translation.

These tools, particularly web translation frameworks, together with manual and style guides,

promote the involvement of ‘non-technical users’ in the development project, allow to carry

multiple translation projects to many languages at the same time, and promise to enhance the

quality of translations. The main goal of this work is to provide a detailed view of the translation

process in libre software, showing a variety of cases of projects that carry out localization tasks,

the different tools that may support that work, and the people that are involved in translations in

libre software projects.

13

14 SUMMARY

Resumen

Las licencias de software libre permiten modificar el programa y distribuir la obra derivada, por

lo que los usuarios de software libre pueden traducirlo al idoma o dialecto que deseen.

En este trabajo analizaremos esta libertad legal y su viabilidad técnica, propiciada mediante

el acceso al código fuente y el uso de diferentes guı́as de inernacionalización, programas y

plataformas, que los desarrolladores de software libre han creado para ayudar a la traducción

del software.

Estas herramientas, en particular los entornos de traducción web, junto con los manuales y

guı́as de estilo, promueven la implicación de ‘usuarios no técnicos’ en el desarrollo del proyecto,

permitiendo llevar a cabo múltiples proyectos de traducción a muchos idiomas a la vez, y prome-

tiendo mejorar la calidad de las traducciones.

El principal objetivo de este trabajo es proporcionar una visión detallada del proceso de

traducción en software libre, mostrando una variedad de casos de proyectos que llevan a cabo

tareas de localización, las diferentes herramientas que apoyan ese trabajo, y las personas que

están implicadas en la traducción de proyectos de software libre.

15

16 RESUMEN

Chapter 1

Introduction

1.1 Terminology

1.1.1 Internationalization, localization, translation

Software internationalization is the process to prepare a program to be adapted to different

languages, regional or cultural differences without engineering changes (source code remains

the same) [Con10]. This process involves tasks as separating the text strings that are showed to

the user in the different interfaces so they can be translated, supporting the different character

sets, using certain libraries to manage date, currency or weights and measures entry verification

according to the different formats, and many other details. Internationalization is sometimes

referred to by the numeronym i18n (as in: “i”, followed by eighteen more letters, and then “n”).

Localization is the process of adapting the software to a particular target market (a lo-

cale) [Con10]. This process involves tasks as translating the text files to the desired language or

dialect, providing translated documentation with images (screen shots) in the target language,

adapting graphics and colors, adopting local currencies, using proper forms for dates, measures

and many other details. Localization is sometimes referred to by the numeronym l10n (as in:

“l”, followed by ten more letters, and then “n”).

As we can see, translation, that is, adaptation of information in text form to a target locale,

is part of the localization process, but not all of it.

17

18 CHAPTER 1. INTRODUCTION

1.1.2 Free, libre, open source software

The usage and distribution terms of any software can be read in its license.

Every software product need a written license, because software works are covered by copy-

right law, and this law states that all the rights (the right to use, to distribute, to modify, to link

that software with others, etc) belong to the author or copyright holder. This usually apply not

only to the code of the program, but also to its end-user documentation (manuals, guides).

Developers of proprietary software use licenses to state what the user can do with the pro-

gram (usually, few things: for example, to use it, maybe distribute it without changes, maybe

distribute it but free-of-charge). Normally they write in “negative-language”: they state all the

things that the user cannot do (for example “you can use this program only for educational

purposes, professional use is not allowed”).

On the other side, developers of free software state in their licenses the rights or freedoms

that provide to the end-user.

The concept of free software was conceived in 1983 by Richard Stallman, when he started

the GNU Project to develop GNU: a complete free software system, upward-compatible with

Unix, and bringing back the cooperative spirit that prevailed in the computing community in

earlier days: to make cooperation possible once again by removing the obstacles imposed by

the owners of proprietary software [Fouc].

The Free Software Foundation was created to advocate for free software ideals as outlined

in the Free Software Definition [Fou12b], which states that for a program to be said that it is

free (as in freedom) software, its license should include four basic freedoms:

• Freedom to use the program, for any purpose

• Freedom to study and adapt the programs (modify)

• Freedom to distribute the program to others

• Freedom to distribute to others the modified versions of the program

It is possible to provide the four freedoms and state other clauses or restrictions in the license

not affecting those freedoms; and the software will still be free software. One example can be

a the license with a clause stating that if you distribute the program, modified or not, it must

been distributed within the same license terms. This is what is called “copyleft”, and the most

1.1. TERMINOLOGY 19

known copyleft licenses are the General Public License version 2 [Foub], and the General Public

License version 3 (GPLv3) [Foua], which are widely used in the free software communities.

Other free software licenses that are more “permissive” and not considered copyleft are the

Apache v2.0 license, or the BSD license.

In 1998, the Open Source Initiative (OSI) was founded, coining the Open Source Defini-

tion, with a different writing but similar legal effects than the definition of free software, while

focusing its philosophy in how these technologies, licenses, and models of development can

provide economic and strategic advantages [Ini12].

In practice there are small differences between “free software” and “open source software”.

However the term “open source” has been historically rejected by part of the community, claim-

ing that it misses the meaning of freedom. On the other side, other part of the community, mainly

the business supporters behind the Open Source Initiative, were reluctant to use the term “free”

because of the confusion between the meaning of “freedom” and the meaning of “no cost”.

In order to avoid the confusion of the term “free”, but keeping the meaning of freedom,

“liberation”, the term libre software has gained popularity in the last years (and with it, the

acronym FLOSS: Free, Libre, Open Source Software). In this document, “libre software” will

be used to refer to any code that conforms either to the definition of “free software” (according

to the Free Software Foundation) or “open source software” (according to the Open Source

Initiative).

Software licenses and localization

The “limitations” of privative licenses to end-users of the software creates a situation in which,

without permission from the copyright holder, it is illegal to translate the software to other

languages different than the provided in the software release. It is also forbidden to make inter-

nationalization improvements to the software, if certain parts of it need to be modified in order

to be suitable for localization. In addition to this, while there are cases of “privative software”

translated to other languages by users (for example, the translation of Twitter, which is man-

aged in the website http://translate.twttr.com and open to external contributions),

the common case (of privative software) is that software development company or organization

controls the translation process, whether providing themselves the translations, or subcontract-

ing them to a professional translation company.

http://translate.twttr.com

20 CHAPTER 1. INTRODUCTION

The free software licenses create a totally different scenario for software localization. As

any modification of the software is allowed, end-users may translate the software to their desired

language or dialect, without need of permission from the copyright holder. This legal viability

is usually viewed as an advantage of libre software versus proprietary alternatives, both by

users and by developers, so, although it is not a requirement and we can find free software

created under a closed development model, it is common that both communities collaborate in

the translation processes: for developers, is a way to increase the dissemination of the program,

attract new users and new possible contributors to improve the project. For users, is a way

to guarantee the availability of the software in their language, despite of the interests of the

developer group or company.

In figure 1.1 we can find a diagram summarizing this two different scenarios.

Figure 1.1: Software Licenses and Localization

1.1.3 Free culture, freedom definition, creative commons

As explained above, software is considered a cultural work, and after the success of the legal

hacking to copyright laws to bring freedom to the software users, a free culture movement

was born, which pretends to extend that freedoms to the “users” or “receivers” of other kind

of cultural work (such as literature, films, multimedia contents. . .). A wider definition of free,

libre cultural works has been designed with the name of Freedom Defined [Def08] and on the

other side, a set of licenses known as Creative Commons [Com12] have been written, in order

to show to the authors or copyright holders their possibilities for retaining certain rights while

bringing more freedom to their audience (for redistributing the work, modify it, translate it, or

make business with it).

1.2. ABOUT THIS DOCUMENT 21

Although Creative Commons is a set of 6 different licenses (a three-layer design of the attri-

bution (CC-BY), non-commercial (CC-NC), non-derivative (CC-ND) and share-alike (CC-SA)

components that can be combined) plus one more, CC-0, equivalent to public domain, only

three of them (CC-BY, CC-BY-SA and CC-0 for public domain) are considered “free” accord-

ing to the Freedom Defined definition (or the philosophy behind the Free Software Movement

represented on the Free Software Foundation). However, we cannot avoid the great advance that

they represent (if we compare them with the restrictions of the “standard copyright” application)

and their role in spreading the word of openness and free access to culture.

Being the free software licenses best adequate to guarantee the freedoms to the user of

computer programs, Freedom Defined and Creative Commons licenses may also be used (and in

fact, they are used) within the scope of software projects, licensing with them for related work as

documentation, artwork, multimedia components or derived knowledge from translation work

as translation memories or glossaries.

1.2 About this document

1.2.1 Structure of the document

In this chapter I am introducing the main concepts needed to understand the framework of lo-

calization in libre software projects. In chapter 2 the goals of this work are presented. Chapter 3

is devoted to analyze how localization and translation is performed in libre software projects,

giving some brief examples of each phase and the tools and tasks involved. Chapter 4 shows the

benefits that localization brings for the libre software projects, its stakeholders and the society

in general, and chapter 5 explains some of the problems and challenges to face when “going

international”. In addition to the already presented examples in former chapters, detailed case

studies are analyzed in chapter 6. Finally, conclusions are drawn in chapter 7, including lessons

learned and future work.

Four Appendix are provided: Appendix A is a list of libre software tools to help localiza-

tion (the ones mentioned in former chapters, and others listed for further reference). A set of

interviews to translators is provided in Appendix B, and my own experience participating in

the localization of several projects is included in Appendix C. Finally, Appendix D explain the

22 CHAPTER 1. INTRODUCTION

possibilities of getting information about how localization is managed by mining the software

repositories, using the project Tux Paint as example.

1.2.2 Scope

Internationalization and localization are complex processes involving many different aspects.

This document will focus on explaining some tools, frameworks and workflows followed by

different libre software projects, without entering in technical details as how the used tools

are developed, their complete feature list, particularities of target locales as text orientation or

character sets. . . With respect of localization, we will focus on translation (that is, localization

of texts). The intention is not thoroughly compare the different approaches for international-

ization and localization, but to show the wide diversity available (and not only available, but

susceptible of improvements because of their nature of being libre software) for carrying out

internationalization and localization tasks.

1.2.3 Methodology

I have gathered the information presented in this work from different sources. On one side,

we have the public available sources as websites of the projects, documentation, mailing lists

for translators, and related literature showed in the Bibliography. On the other side, I have

contacted personally with some free software translators, and also provided my own experience

contributing to the translation to Spanish of several libre software projects.

Chapter 2

Goals and objectives

2.1 Goals

The main goal of this work is to understand how translation is carried out in libre software

projects, the different tools available for each need of the process, and why localization and

translation is a key aspect for the sustainability of the libre software projects.

Another goal is to present personal stories related with the participation in the localization

of libre software projects, so any person thinking about getting involved in this kind of task may

get a clear image of what to expect and ensure a successful and gratifying experience.

2.2 Objectives

In order to achieve these goals I have set the following objectives:

1. Explain the different phases of localization process.

2. Analyze the benefits and counterparts of using open and collaborative development mod-

els for translation and localization.

3. Provide case studies of libre software projects and tools

4. Present the experience of certain individuals involved in localization tasks.

23

24 CHAPTER 2. GOALS AND OBJECTIVES

2.2.1 Explain the phases of localization process

• Define each phase of localization, describing tasks, tools and people involved.

• Present new trends, if any, for each phase.

• Provide several examples of the different approaches.

2.2.2 Analyze the benefits and counterparts

• Analyze the benefits for the libre software community.

• Analyze the benefits for other stakeholders and society in general.

• Explore the possible vulnerabilities and threats to take into account.

2.2.3 Provide case studies of libre software projects and tools

• Gather in-depth information about how localization is carried out for several libre soft-

ware projects.

• Show traditional, widely used tools for localization

• Introduce new tools that are becoming trend in localization processes

2.2.4 Present personal experiences

• Gather personal experiences of people involved in translation teams of libre software

projects.

• Present the information in a comprehensive way, thinking on people that are not involved

(yet) in libre software projects.

Chapter 3

Localization in libre software projects

3.1 Localization workflow

There is not a standard, accepted workflow for localization followed by all the libre software

communities, nor by the professional translation communities (the object of translation being

software or not).

OASIS, the Organization for the Advancement of Structured Information Standards, ap-

proved in December 2009 the Open Architecture for XML Authoring and Localization (OAXAL),

encouraging the development of an open Standards approach to XML Authoring and Localiza-

tion [ftAoSISO09].

Among many other processes and proposals, OAXAL sets up a suitable translation work-

flow, comprising the following steps:

• Identification of the text to be localized

• Segmentation of the text into sentences if required

• Matching of the sentences with previous translated versions of the document if possible

• Translation of the text

• QA/Post-editing of the translated text

• Merging/recreation of the original document in the target language

Figure 3.1 reproduces this workflow.

25

26 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

Figure 3.1: Document Localization Life-cycle

While OAXAL open specification is still to be widely accepted in the localization world

and business environments, it represents a comprehensive, efficient, and cost-effective model

regarding the authoring and translation aspects of XML publishing. The localization workflow

may be applied in the libre software communities in order to easily integrate the work of profes-

sional translators, the same than other parts of developments are also getting professionalized.

We can adapt the different phases of the localization life-cycle to the process of localizing a

software project so we can obtain the following workflow:

• Prepare: Identification of the objects to be localized

• Internationalize: Separate texts from source code, set up the accepted type of documents

for translation.

• Localize(1): Match the objects to be translated with previous translated versions of the

project if possible

• Localize(2): Translation of the pending strings

• QA/Post-editing of the translated objects

• Publish: Update the original project integrating the target language

3.2. PREPARE: DEFINING OBJECTS TO BE LOCALIZED 27

Although not all the libre software projects care well about all the process, we will see in

the following sections how each phase of the process can be carried out and some examples of

successful cases.

3.2 Prepare: Defining objects to be localized

A software project is not only the source code, there are many artifacts susceptible of translation

or localization. The first step of the localization workflow is to define the objects to be localized:

• Source code: hard-coded strings, comments, interface-related strings (this may come in

.po files, .php, .ini, .xml files. . .)

• Text files that “come” with the binary release: README, license, disclaimers, changelog,

credits files.

• Documentation: this can be available in text files, DOC, ODT, RTF, HTML files, Wiki

pages, PDF. . .

• Images. audio, video subtitles

• Marketing tools: flyers, banners to put in websites for promotion

• Other

The people involved in this task is the whole community: users may suggest that the soft-

ware needs to be translated to a new language, or complain about incomplete translations, or

translated text but not screenshots for example. Internationalization team (i18n-team in advance)

should receive that user feedback and communicate it to the development team and localization

teams, prioritize and coordinate the steps involved in this task. The main tools used for defin-

ing the localizable objects are the communication channels of the project: mailing lists, issue

tracker, website (where at least a brief list of the localizable objects is needed along with the

help to possible contributors). The results of this task is, as explained before, a detailed list of

the objects to be localized.

28 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

3.2.1 Some examples

The KDE desktop environment, in its localization page1, states that the localizable objects for

this project are the Applications and the Documentation. More information about KDE interna-

tionalization and localization process can be found in section 6.4.2.

The Debian community in its internationalization page2 defines which kind of objects are

localizable within their project:

• Installation system (the Debian installer)

• Debian documentation

• Debian web pages

• Debian wiki pages

• Debian specific packages

Since Debian is a GNU/Linux distribution, which basically is a collection of an operating sys-

tem, software components and applications adapted to be used altogether in a specific hardware

architecture, it encourages people willing to translate other kind of objects to contribute their

suggestions or translations to the upstream projects. More information about Debian interna-

tionalization and localization process can be found in section 6.4.3.

3.3 Internationalize: Setting up the i18n platform

A project’s internationalization team is a bridge between developers and translators.

On the “developers” side, the internationalization team reviews all the artifacts susceptible

of localization and suggests accepted formats for all of them, and also creates or suggests

coding guidelines in order to ease the localization task. For example, if the project includes

images, it is easier to change the text included in the images if they are in a vector format as

SVG, better than in a “photographic format” as JPG.

1http://l10n.kde.org/
2http://www.debian.org/international/index.en.html

http://l10n.kde.org/
http://www.debian.org/international/index.en.html

3.3. INTERNATIONALIZE: SETTING UP THE I18N PLATFORM 29

On the “translators” side, the internationalization team creates and/or manages the common

infrastructure used by all the localization teams: documentation for translators, communica-

tion channels, coordination, translation server or platform, and development of specific tools.

Internationalization team also decides about the timing of the translation process, according

it with the release schedule.

In addition to i18n-team, other contributor roles in the project may be needed to carry out

this task: infrastructure team to set up the platform or mechanism to keep up to date internation-

alization files, and developers, to discuss and accept the coding guidelines.

The tools used in this task are the communication channels, tools as gettext to generate

i18files such as POT templates, scripts or robots to periodically run to generate the templates so

they are up to date all the time.

The products derived from this task are the i18n files (such as POT templates for example),

scripts, documentation for developers and translators.

3.3.1 Used and accepted file formats for localization

There are a number of standards to be applied to the task of translation and localization, that

determine the use of certain file formats to ensure interoperability, that is, the ability to use

different tools to do the translation work.

If we look at the complete process of localization in general (not only related to software

localization), considering the OAXAL framework [ftAoSISO09], there are certain standard file

formats used in localization, as tmx, tbx, and xliff.

However, these standards are quite recent and the authors of libre software were worried

about the localization from the very beginning. So, much before the OAXAL framework was

designed, other kind of file formats became de facto standards as the “PO” (Portable Object)

file format for software translations.

The GNU Project [Fouc] took the tool Gettext [Fou10], which first implementation is from

Sun Inc3 and used it to help the internationalization of the GNU project software. Gettext ex-

plores the source code and extracts all the “printed” strings into a POT file.

With time the use of PO files have become a de facto standard for libre software interna-

tionalization. There are other file formats used to hold the translatable strings; one of them is

3http://compgroups.net/comp.unix.solaris/History-of-gettext-et-al

 http://compgroups.net/comp.unix.solaris/History-of-gettext-et-al

30 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

the XLIFF (XML Localization Interchange File Format), which version 1.2 was approved by

OASIS in February 2008 [ftAoSISO08]. XLIFF consist in an XML specification to hold trans-

latable strings along with metadata. This format is very used in professional translation and not

only in software internationalization.

Nowadays we can find multiple file formats for internationalization of software, documen-

tation and other elements in any libre software development project. For example, Android

Operative System uses “Android Resources” to make easy the localization of Android applica-

tions. More information can be found in http://developer.android.com/guide/

topics/resources/localization.html.

In table 3.1 there is a summary of the characteristics of different internationalization for-

mats [Tra12].

3.3.2 Collaborative models and tools to approach l10n tasks

The concept of free software was born to retrieve the spirit of collaboration, so it is very com-

mon, specially in the last years, to find libre software projects that build a collaborative web

infrastructure to carry out localization tasks. The advantages of crowdsourcing for the project

include [CS12]:

• Lower user access barrier to localization, and receive the user experience that deals ev-

eryday with the software

• Lower the costs of translation

• Translation work and integration is fast

• The process enhances user identification and involvement with the project

• Peer review and editing of translation is built into the system

It is task of the internationalization team to study and decide if the localization of the project

is going to be driven by a crowdtranslation platform or other kind of tools and mechanisms.

In the first case, some projects decide to use one an external web based collaborative en-

vironment for all the localization teams to be coordinated (for example, OpenStack project is

http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

3.3. INTERNATIONALIZE: SETTING UP THE I18N PLATFORM 31

Name File extension Notes

Android Resources .xml XML based format. 3 types of entries:

string, string-array and plurals.

Apple strings files .strings UTF-16

Desktop files .desktop Configuration files describing how a program

appears in menu, etc. It is widely used by KDE and Gnome

Gettext based formats .po, .pot Widely used in libre software projects.

Many tools to convert to/from PO files

Java Properties .properties ISO-8859-1

Joomla! INI files .ini Joomla localization files

Maker Interchange Format .mif Markup language for Adobe’s FrameMaker documentation.

Mozilla DTD .dtd List of entities that need localization before used in XUL files.

PHP files .php 3 types: PHP Array, Define and Alternative Array

Plain text .txt One text file for each translated language.

Property list files .plist XML based, used to store serialized objects,

in Mac OS X, iOS, NeXTSTEP, GNUstep.

Qt Linguist .ts XML based

Subtitle formats .srt, .sub, .sbv SubRip, SubViewer and Youtube captions

Wiki markup .wiki Syntax and keywords used by the MediaWiki software

and other Wiki packages

Windows installer projects .wxl XML based, used to build .msi installation files

Windows resource files .resx .NET and Windows Phone applications

HTML, XHTML .html, .xhtml An HTML parser may extract the text to translate.

XLIFF .xlf, .xliff, .xml XML Localization Interchange File Format,

XML-based, created to standardize localization.

YAML .yml, .yaml YAML translation dictionaries

Table 3.1: Internationalization file formats

32 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

discussing about which platform to use: Pootle, Launchpad or Transifex, for handling the lo-

calization of the documentation, and includes some comparative charts and assessment in their

wiki page about translations4). The approach can be to use an external server (hosted outside

the project) where the chosen platform is running (this case will be discussed in next sections as

does not require internationalization effort), or to deploy an instance of that software using one

of the community servers, in which case the infrastructure team of the project, in coordination

with the internationalization team, should care that the server is up to date and running all the

time, in order to offer the service to the localization teams.

On the other side, some projects decide to develop their own web-based infrastructure,

which is usually also released as free software, and depending on the focus of the platform

(more oriented to the project for which was created, or more standardized), may be used later

for other projects too.

3.3.3 Some examples

The Android Open Source Project includes a Localization document5 explaining the process

that Android developers should follow in order to make their applications localizable. There is

also available the Hello, L10N tutorial6 providing an example of how to build a simple localized

application that uses locale-specific resources [RR12].

The KDE internationalization build system7 basically consists in a script running in the KDE

source code repository server, which extracts the localizable strings in the KDE source code and

generates the localization templates periodically. This way developers only need to care about

writing code with localization in mind, and localizers will always find an update template with

the last strings to translate as developers introduce changes in the system.

Many different and popular projects decide to host their translation in an external service.

For example Wordpress uses the official Pootle translation server8, and the FreedomBox Foun-

dation and the Fedora community use Transifex9 for the localization of their websites.

4http://wiki.openstack.org/Translations
5 http://developer.android.com/guide/topics/resources/localization.html
6 http://developer.android.com/resources/tutorials/localization/index.html
7http://techbase.kde.org/Development/Tutorials/Localization/i18n_Build_

Systems
8http://pootle.locamotion.org/
9http://transifex.net

http://wiki.openstack.org/Translations
 http://techbase.kde.org/Development/Tutorials/Localization/i18n_Build_Systems
 http://techbase.kde.org/Development/Tutorials/Localization/i18n_Build_Systems
http://pootle.locamotion.org/
http://transifex.net

3.4. LOCALIZE: SETTING UP THE L10N PLATFORM 33

About project-tailored web based localization platforms, we can find Damned Lies10 which

is the translation platform developed and used by the GNOME project, or the Drupal localiza-

tion website11 which is used in the Drupal CMS project.

3.4 Localize: Setting up the l10n platform

Generally there are independent teams for each language and they agree on using locale-specific

tools, formats, guidelines... Each localization team is responsible to translate, review, and up-

load changes to the source code repository. The tools used vary from traditional tools as Poedit,

or plain text editors, to sophisticated web platforms that integrate translation and revision pro-

cesses, and sometimes even automatically committing the changes to the SCM repository.

The products result of this task may be localization files, translation guidelines, glossaries,

language-specific conventions. . .

3.4.1 Web platforms for supporting translation

As I explained before, in the last years a number of web based translation platforms have been

developed in order to get the advantages of internet based collaboration, automate certain tasks

and also lower barriers to external contributions (crowdtranslation).

Despite of the internationalization team of the project recommending or not to use one of

these web platform, each localization team is usually free to use the tools that they want. For

these reasons, sometimes we find that some language teams decide to use a certain, local tool,

and other localizations of the same project are driven in a (usually external) web based platform

for translations.

Sometimes this situation is found in early stages of the project, and once that several tools

are tried the internationalization team together with the different language teams decide if rec-

ommending one of the available tools or keep the l10n teams to choose depending on their

circumstances.

10http://l10n.gnome.org/
11http://localize.drupal.org

http://l10n.gnome.org/
http://localize.drupal.org

34 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

3.4.2 Some examples

Poedit12 is a cross-platform editor por .po files (gettext catalogs). It allows to configure the

tool with the information related to the translator (name and email) and the environment, and

every time a file is translated and saved, that information is included in the file. In figure 3.2 we

can see a file opened for translation with a text editor, and the same file opened with Poedit.

Figure 3.2: A gettext catalog opened with a text editor, and with Poedit

Virtaal13 is a more modern translation tool, which allows working with XLIFF files [MW11].

In figure 3.3 we can see an XLIFF sample file opened with a text editor and with Virtaal.

Probably the older example of a web based translation platform is Pootle14, which is built

on top of the Translate Toolkit15, a set of scripts and tools to help localizers carry out their
12http://www.poedit.net/
13http://translate.sourceforge.net/wiki/virtaal
14http://translate.sourceforge.net/wiki/pootle/
15http://translate.sourceforge.net

http://www.poedit.net/
http://translate.sourceforge.net/wiki/virtaal
 http://translate.sourceforge.net/wiki/pootle/
http://translate.sourceforge.net

3.5. MAINTENANCE AND QUALITY ASSURANCE 35

Figure 3.3: An XLIFF sample file opened with a text editor and with Virtaal

tasks. Pootle allows online translation, work assignment, gives statistics and includes some re-

vision checks. Launchpad, which is a complete software forge including a powerful web based

translation system, was developed by Canonical to handle the Ubuntu development, and ini-

tially released under a privative license, but later liberated under the GNU Affero General Pub-

lic License, version 3. Transifex is a newer platform which enhances the translation memory

support, and Weblate is the last one coming to the neighborhood, developed by Michal Cihar

(PHPmyAdmin project leader), and introducing a better integration with the Git control version

system.

In section 6 several web based translation platforms are studied in-depth.

3.5 Maintenance and Quality Assurance

This is not the last step, but several tasks that affect the whole process, including the revision

of translations (in l10n teams, before committing the changes), bug submitting and tracking for

36 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

translation suggestions or problems, extending the number of different kind of objects to be

localizable, or targeting new languages.

The people involved in this task is the whole software community: users, l10n teams, i18teams

and developers.

The results of this task are not new files, but the improvement of the existing products, and

the update of the documentation and information related to i18n and l10n.

3.5.1 Some examples

The Translate Toolkit16 is a collection of useful programs for localization, and a powerful API

for programmers of localization tools. The Toolkit includes programs to help check, validate,

merge and extract messages from localizations. Among them we can find:

• poconflicts - extract messages that have conflicting translation

• pofilter - filter PO files to find common errors using a number of tests

• pogrep - find strings in PO files

Pology17 is a Python library and collection of command-line tools for in-depth processing

of PO files. Some of the prominent elements of Pology functionality include examination and

in-place modification of collections of PO files (the posieve command), and custom translation

validation, by rules written by users for particular languages and projects, and applied in various

contexts. Pology distribution contains internal validation rules for some languages and projects,

and more can be contributed at any time.

3.6 Who are the translators?

In previous sections I have briefly drawn the roles involved in each phase of the localization

process: users, localizers (translators), internationalization team, developers. But what kind of

people decide to join these internationalization and localization teams? Well, it depends on the

project, but we can say that although localization is a very specific task which involves specific

workflows and tools, no particular skills are required to work on it.
16translate.sourceforge.net
17http://pology.nedohodnik.net/

translate.sourceforge.net
http://pology.nedohodnik.net/

3.6. WHO ARE THE TRANSLATORS? 37

It is very common that each localization team have their own mailing list or forum where

they communicate in the “target” language, so the access barrier for new participants is also

lower.

In addition to this, localization is a low-risk task (few critical bugs arise from poor or wrong

localization) and it has high granularity: the minimum “translatable” unit is the sentence or

sometimes even a single word. All these particularities make localization an attractive start

point for people willing to get involved in a free software project.

The motivations and benefits of caring about localization are multiple (see section 4) so we

can find translators from very different affiliation:

• Developers: Whether reasons are globalization and migratory movements, or the collab-

orative nature of open development model, which is followed by many libre software

projects, it is common to find people participating in the project who know more other

languages. Therefore it is also common that the need/opportunity for localization “ap-

pears” in a natural way in early stages of development: with little additional effort and

many times willingly, developers get involved so their project release is localized to their

known languages18.

• Users (volunteers): They deal with the application each day so they know its interface

and the contexts of each message. In many cases they don’t know how to work with the

localization tools but being localization files text files, this is rarely a handicap in order to

contribute translations19.

• Public administrations: they may be interested in promoting the usage of a certain soft-

ware but they need it to be localized to the regional language. In other cases is a way to

promote minority languages, providing software translated to that languages.

• Professional translators (as individuals): for the professional or trainee translators, par-

ticipating in a libre software community allows them to be in contact with cutting-edge

trends in localization as crowdsourcing - crowdtranslation, use accessible Computer

18For example, Jernej Simončič (Slovene Open Source developer) releases GIMP and GTK+ installers for Win-

dows in English and in Slovene (http://sourceforge.net/projects/gimp-win/)
19This is my own situation, see Appendix C

http://sourceforge.net/projects/gimp-win/

38 CHAPTER 3. LOCALIZATION IN LIBRE SOFTWARE PROJECTS

Assisted Translation applications with similar characteristics to the ones used in pro-

fessional environments, practice with the different objects to be localized, and assume

different roles in the translation workflow. They may contribute to free software projects

as translation training or to improve their experience portfolio. They may be contracted

by companies or public administrations willing a software to be translated to a certain

language.

• Companies: The software may be part of a complete system or solution developed or

deployed by a company, and they want the whole system to be localized to the locale of

their target market.

Chapter 4

Benefits

4.1 Benefits for the libre software community

Using libre software licenses and an open development model to carry out localization task

brings many benefits for the libre software community.

4.1.1 Extra features with not much extra workload

Developers knowing other languages, specially if they work on the program interface, are able

to translate the software to their own language with little extra work. This approach enriches the

software project, as each language can be seen as a new feature of the product.

4.1.2 Sustainability: Increase market share and demand for services

Globalization of markets and development of information and communication technologies

have meant an increment in the needs of linguistic management for any far-reaching social

or business initiative. Having the software translated to many languages helps spreading its use

so it is a very powerful asset to gain market share and also increase sustainability of the business

since there will be more demand on services related to the software.

4.1.3 Ease the integration of localization made by others

The free software licenses allow the user to modify the program, mix parts of it with other

software and vice versa, and they also allow to redistribute that “derived works”. In some cases,

39

40 CHAPTER 4. BENEFITS

this makes that localization simply “happens”, sometimes even without the official (upstream)

software developers being notified. Deploying the infrastructure needed for localization in the

original project prevents this kind of “forks” integrating the external contributions and taking

benefit of them.

4.1.4 Localization as a way of recruiting

One of the competitive advantages of libre software is based in this open and collaborative de-

velopment model, which brings more human work to the project, at a relatively low cost (main-

tenance of the collaborative infrastructure, and coordination of external contributors). Creating

and maintaining alive the users and contributors community is a fundamental aspect for many

libre software projects. Efforts towards improving project internationalization and create local-

ization helping infrastructures lower the access barrier for contributor candidates, and some of

them will become regular contributors in the localization teams and possibly in other areas of

the project.

4.1.5 Standardization in localization, for recruiting professional transla-

tors

The experience in the development and participation in localization tasks in libre software

projects opens new opportunities for professionals of language management. Marcos Cánovas

and Richard Samson have studied the mutual benefits of using libre software in translator train-

ing [CS12], both for the trainees and for the libre software community.

For the software community, it is logical to think that if a professional (or training) translator

decides to collaborate in the localization of a libre software project, she would choose the one

that allows her to maximize the benefits for her professional career. Therefore, efforts toward

standardization as using standard file formats or promoting workflows and tools similar to the

ones in professional translation may serve to attract these professional translators to the libre

software communities and this would increase the quality of software localization and as a

consequence, the quality and professionality of the project as a whole.

4.2. BUSINESS OPPORTUNITIES 41

4.2 Business opportunities

Localization of libre software may open business opportunities for companies specialized in

translation and localization, or other kind of companies.

4.2.1 Translation companies completing the community work

Companies specialized in translation and localization of software may cover several cases where

the community or company developing a certain libre software cannot reach [Par11]:

• Big projects as GNOME need great work due to the volume of translation. In addition

to this, it is necessary to maintain different versions for localization (because there are

multiple versions in the market). This stable work may be provided by a company.

• Specific applications as OpenBravo may not produce enough synergies to attract volun-

teer translators, but it has enough number of users (or certain users) that want the software

to be translated. A company may offer this work to the company that releases the soft-

ware.

4.2.2 Services on libre software translation tools

Some of the services that can be deployed on top of libre software translation tools are the

following:

• Install, maintain, support translation servers or websites.

• Maintain, adapt and extend linguistic data.

• Starting for a certain language pair, build data on another language pair.

• Develop new tools based on the existent libre software.

Some examples of business with libre software translation tools

• Acoveo1 is a software development company offering several services and among them

we can find www.translate-software.com, a solution for software localization
1http://www.acoveo.com

www.translate-software.com
http://www.acoveo.com

42 CHAPTER 4. BENEFITS

consisting in a Maven plugin and a Jenkins plugin that are offered for free (under the

AGPL license) to their customers. The Maven plugin takes care about extracting all the

translatable strings of the client’s software, and send the strings to www.translate-

software.com, where professional translators will localize them, at a certain price per

word. The Maven plugin also takes care of retrieving the translated strings as resource files

and integrate them back in the client’s software. The Jenkins plugin allows the customer

to control at any time the localization workflow and progress.

• A similar business is provided by ICanLocalize2, which offers website translation, soft-

ware localization, Text translations and general translations. For website translations they

have developed a Drupal module called “translation management”3, released under the

GPL license, and the Wordpress MultiLingual Plugin4 (which is licensed as GPL and

offered at a certain cost, including the fees for the website content translation).

• Transifex is a libre software project that turns on a company offering hosting and support

on its platform. It is analyzed in section 6.3.3.

4.2.3 Localization tools as free software: a new market to explore

Deep knowledge about how the localization processes work in software projects, and the needs

of software translators may lead to know how the localization processes work “in general”, and

the needs of “general” translators. This opens a market niche to libre software developers, for

creating new translation help tools (for translating software or other kind of works), that can be

used in the libre software communities, but also in the professional translation area (competing

with privative Computer Aided Translation tools).

2http://www.icanlocalize.com
3http://drupal.org/project/translation_management
4http://wpml.org

www.translate-software.com
www.translate-software.com
http://www.icanlocalize.com
http://drupal.org/project/translation_management
http://wpml.org

4.3. SOCIAL BENEFITS 43

4.3 Social benefits

4.3.1 Reduce the digital gap

Localization allows users to interact with software in their own language via an intuitive way,

and as consequence, user’s proficiency increases. In addition to this, having a software localized

lowers the access barrier to certain groups without knowledge of other languages or being under-

educated.

4.3.2 Develop and promote minority languages

Minority language activists find libre software a very useful tool, since they can localize what-

ever libre software to whatever language they want. Having literature and written documents

in minority languages has been the traditional way to ensure their survival as repositories of

culture; in the information technologies age, localized software is another way of cultural pro-

motion of that languages and language revitalization.

4.3.3 Localization results as free culture works

After any individual or community perform a localization tasks, there is an obvious result of this

work: the localization files of the software, in the target language. As the localization is done

for a libre software, those files will be under the free software license too, so they can be reused

or modified in future versions, and for different projects. But there are other results from the

translation work that they can be released as free cultural works or not: translation memories (a

database that stores paired segments of source and human translated target segments), glossaries

(definitions for words and terms found in the program user interface), and corpora (large and

structured set of texts). Releasing these structured linguistic databases with free culture licenses

increases dramatically the ease of performing new translations of many different software to

the target language, since translators of the new software count with powerful, productivity

aids. Some examples of these localization and translation databases released as free cultural

work are:

• Galician Corpus Mancomun5: As result of the Mancomun (the Reference Service Center
5http://corpus.mancomun.org/

http://corpus.mancomun.org/

44 CHAPTER 4. BENEFITS

for libre software in Galicia, promoted by Spanish Galician regional government) effort

in translating several applications to Galician language, the Galician corpus Mancomun

allows searches of words in English or Galician at any of the stored projects, providing

English-Galician pairs of phrases where the text that was searched is found. In addition to

this, there is an open API (through XML and XML-RPC) allowing plugin or application

development and integration of the Corpus in other kind of computer aided translation

software.

• The Atshumato Project6 was initiated by the South African Department of Arts and Cul-

ture, and its developments are done by the Centre for Text Technology (CTexT) at the

North-West University (Potchefstroom Campus), in collaboration with the University of

Pretoria. The general aim of this project is the development of open source machine-aided

translation tools and resources for South African languages [CCfTTC12]. Among them,

Atshumato releases Translation memories in the Translation Memory eXchange format

(TMX) with Creative Commons Attribution Non-Commercial ShareAlike 2.5 license7 for

the following language pairs: ENG-AFR (English to Afrikaans), AFR-ENG (Afrikaans

to English), ENG-NSO (English to Sepedi), NSO-ENG (Sepedi to English), ENG-ZUL

(English to IsiZulu), ZUL-ENG (IsiZulu to English).

6http://autshumato.sourceforge.net/
7As explained in section 1.1.3 this is not a completely “free culture work” but allows quite more freedoms to

the receiver than traditional copyright application

http://autshumato.sourceforge.net/

Chapter 5

Problems and challenges

“Going international” is not a task exempt from risks or problems. In this chapter I will show

some aspects to take into account with respect to internationalization, localization and transla-

tions.

5.1 Internationalization problems

Projects that are designed without taking into account an internationalization perspective may

need a complete redesign of their interfaces, codebase and architecture in order to make them

translatable. This may be a lot of work, unaffordable for a small development team.

Sometimes the interface is designed with the original English locale in mind, and keeping it

flexible to fit the translated environment turns in a big challenge for developers or designers. We

can think for example the typical “Ok” button, which turns to 7 character text when translated

to Spanish: “Aceptar”. Other example is the decision to localize (or not) keyboard shortcuts.

In some cases, certain internationalization criteria are integrated in the project (for example,

using gettext for the text messages presented to the user) but not for other parts of the system

(date formats, measures...) and this situation derives in problems for the users of non-English lo-

cales (they expect a completely localized system and may not deal well in the resulting “mixed”

environment).

45

46 CHAPTER 5. PROBLEMS AND CHALLENGES

5.2 Division of work and coordination problems

It is necessary a good communication channel and good coordination between developers and

translators to avoid problems and repeating tasks.

For example, when a new release is near, it is common to find that translators make efforts

to have all the components of the project translated, while developers try to fix errors that may

affect the interface or translatable strings1.

5.3 Crowdsourcing and quality of translations

Having a distributed team of collaborators, taking benefit of crowdtranslation, increases the

number of languages and strings translated but may introduce inconsistencies or quality prob-

lems. Some aspects to take into account:

• Neutral register: people translating to their own language may not be aware that they are

using not a “neutral” register but a regional variation of that language.

• Translating without creating glossary and agreeing on terminology may lead to inconsis-

tent translations between the different members of that l10n-team, between the software

and other components of a greater solution or distribution, or between releases (when old

translators are not available anymore, and new translators introduce new terminology)2.

• Low access barrier to new contributors may introduce additional effort for reviewers.

Since review software translations (some of them consisting in individual words or very

short sentences) carry little effort compared with translating them from scratch, it may

1Christian Perrier, the Debian translations coordinator, has recently alerted about this situation to the De-

bian community, with his message “Please consider stopping uploads with *uncoordinated* changes to deb-

conf templates before the release” to the development, release, internationalization, and English localization lists

http://lists.debian.org/debian-i18n/2012/06/msg00046.html
2An interesting initiative to try to help solve this problem is the Open Tran project (http://open-

tran.eu/), a website that gathers the localization files of 10 big software projects (KDE , GNOME, OpenOffice,

openSuSE, Mandriva, Fedora, Mozilla, XFCE, Inkscape and the Debian installer) in more than 100 languages,

creating a searchable translation memory where the translator can see how a certain term is translated in those

“reference” projects.

http://lists.debian.org/debian-i18n/2012/06/msg00046.html
http://open-tran.eu/
http://open-tran.eu/

5.3. CROWDSOURCING AND QUALITY OF TRANSLATIONS 47

not be clear if it is worthwhile to maintain the “crowdsourcing” infrastructure for teams

that already have a group of stable translators.

48 CHAPTER 5. PROBLEMS AND CHALLENGES

Chapter 6

Case Studies

6.1 Internationalization tools

6.1.1 Gettext

GNU ‘gettext’ [Fou10] offers to programmers and translators a framework to help other pack-

ages produce multi-lingual messages. This framework includes a set of conventions about how

programs should be written to support message catalogs, a directory and file naming organiza-

tion for the message catalogs themselves, a runtime library supporting the retrieval of translated

messages, and a few stand-alone programs to massage in various ways the sets of translatable

strings, or already translated strings.

History

The definition of the gettext interface comes from a Uniforum proposal. It was submitted there

by Sun, who had implemented the gettext function in SunOS 4, around 1990. The GNU project

took it and extended it. Nowadays, the gettext interface is specified by the OpenI18N standard1.

How it works

The gettext manual2 explains in details all the things needed to do in order to make gettext work.

In figure 6.1 there is a general overview of the files handled by GNU gettext and tools acting on

1https://wiki.linuxfoundation.org/en/OpenI18N
2http://www.gnu.org/software/gettext/manual/gettext.htm

49

https://wiki.linuxfoundation.org/en/OpenI18N
http://www.gnu.org/software/gettext/manual/gettext.htm

50 CHAPTER 6. CASE STUDIES

those files.

Figure 6.1: Files handled by GNU gettext and tools acting on them

From the point of view of the developer (or the person in charge of internationalize the

code), we briefly explain the steps to follow:

• Import the gettext declaration and initialize the locale data.

• Prepare the English strings to make them translatable: use entire sentences, split at para-

graphs, usual markup. . .

• Mark Keywords: all strings requiring translation should be marked in the C sources, to

help xgettext at properly extracting all translatable strings when it scans a set of pro-

gram sources and produces PO file templates, and also for triggering the retrieval of

the translation, at run time. The canonical keyword for marking translatable strings is

gettext() (it gave its name to the whole GNU gettext package), but it is usual to

define and use the shortcut _(). It is possible to “send” comments for translators as pa-

rameters of the gettext() function, that will be stored in the output .po file just above

the sentence to translate.

• Make the PO Template File: invoke the xgettext program to parse the source code files

and create a domainname.po, which should be renamed to domainname.pot. This

file contains all the translatable strings, and will be used as template by all the translators.

6.1. INTERNATIONALIZATION TOOLS 51

From the point of view of the translator, the steps to follow are:

• Creating a New PO File: copy the .pot file and rename to LANG.po, being LANG the

target locale. It is possible to automate this with the msginit command.

• It is possible to modify the resulting LANG.po file with a text editor, or use a specific

program to handle gettext catalog files (Poedit, the PO mode of Emacs, Virtaal. . .).

• The PO file includes a header, with some initial comments as "SOME DESCRIPTIVE

TITLE", "YEAR" and "FIRST AUTHOR EMAIL@ADDRESS, YEAR" ought to be

replaced with the proper information, as well as other strings as Project-Id-Version

(version of the package), Report-Msgid-Bugs-To (email address or url for bugs

on translations), and other. Some strings are filled in automatically by xgettext as

POT-Creation-Date, or by the editor when the file is saved, as PO-Revision-Date

or Last translator or Language (if an editor capable to manage the meta infor-

mation of PO files is used).

• After the header, we can find the original English strings, with the format:

msgid "text"

and the strings in the target locale, in the format

msgstr "text"

which can be in different states:

– Translated Entries: Only translated entries (and not marked as ’fuzzy’) will later be

compiled by GNU msgfmt and become usable in programs. Other entry types will

be excluded.

– Fuzzy Entries: They are preceded by a line with the mark #,fuzzy, and usually

call for revision by the translator.

– Untranslated Entries: they are in the format msgstr ""

– Obsolete Entries: they are marked as comment by using the character #

52 CHAPTER 6. CASE STUDIES

• Comment lines may be found before each translatable string, showing the file and line of

source code that includes that string, and other messages “sent” to translators by devel-

opers.

• When the source code changes, new templates are generated. It is possible to merge the

existing translated files with the new strings from the new templates using the msmerge

command.

• Gettext also includes a suite of commands for manipulating PO files, among them msgcat

(concatenates and merges several PO files), msgconv (changes character encoding), msg-

grep (extracts strings with a given pattern), msgfilter (applies a filter to all translations),

msguniq (unifies duplicate translations), msgexec (applies a command to all translations

of a translation catalog), and other. These tools can be used to do maintenance and or

quality assurance.

The msgfmt command is used to build .mo binary translation files from the .po gettext

catalog files, which will be used at install time to produce the localized interface of the program.

Key elements of success

• GNU Gettext provides a consistent workflow and tools for each phase of the interna-

tionalization/localization process. This is nonexistent for other type of localization file

formats as XLIFF, where independent tools can be found for some phases but there is not

an integrated process.

• The resulting localization files (.po) have a simple format (where the “ID” of the trans-

latable strings is the string itself) so they can be easily understood and no special tool is

required to work with them, an standard editor is enough.

• Being free software, and used in the GNU project, it became quickly a de facto standard.

• Many different programming languages are supported: C, C++, ObjectiveC, PO, Python,

Lisp, EmacsLisp, librep, Scheme, Smalltalk, Java, JavaProperties, C#, awk, YCP, Tcl,

Perl, PHP, GCC-source, NXStringTable, RST, Glade.

6.2. TRANSLATION TOOLS 53

6.2 Translation tools

6.2.1 Text editor extensions

Emacs PO mode

Some tools for working with Gettext in Emacs can be found in the Emacs wiki (http://

www.emacswiki.org/emacs/Gettext):

• PoMode: edit .po catalogs

• po-mode+.el: extra features for PoMode, by Gaute Hvoslef Kvalnes (KDE and OpenOf-

fice.org translator into Norwegian Nynorsk)

• MoMode: view .mo compiled catalogs

Vim PO plugin

On the other side, Vim also have a plugin for working with PO files (http://www.vim.

org/scripts/script.php?script_id=695):

• po.vim: ftplugin for easier editing of GNU gettext PO files, by Aleksandar Jelenak

6.2.2 Poedit

Poedit3 is a cross-platform editor por .po files (gettext catalogs). It has been introduced in

section 3.4.2. It is simple and well known among translators.

6.2.3 Virtaal

Virtaal4 is a more modern translation tool, which allows working with XLIFF and many other

kind of files. It has been introduced in section 3.4.2.

3http://www.poedit.net/
4http://translate.sourceforge.net/wiki/virtaal

http://www.emacswiki.org/emacs/Gettext
http://www.emacswiki.org/emacs/Gettext
http://www.vim.org/scripts/script.php?script_id=695
http://www.vim.org/scripts/script.php?script_id=695
http://www.poedit.net/
http://translate.sourceforge.net/wiki/virtaal

54 CHAPTER 6. CASE STUDIES

6.2.4 Gtranslator

Gtranslator5 is the translation files editor in GNOME desktop environment. It allows to open

several PO files in tabs, plural forms support, automatic headers update, comments editing,

management of different translator profiles, use of Translation Memories, and other, including

the fact that it inherits the Gedit (GNOME text editor) plugins system.

6.2.5 Lokalize

Lokalize6 is the translation files editor in KDE desktop environment. It developed by Nick

Shaforostoff, and it is a replacement for former localization tool in KDE, Kbabel.

It allows to open PO files as well as XLIFF files, and to use metadata (insert comments or

notes), Translation Memories and Glossaries.

In figure 6.2 we can find a comparison between Poedit, gtranslator and lokalize, from

Ohloh.net7.

6.2.6 Plugins or built-in localization tools

Some programs offer a plugin or tool to ease its own localization, instead of suggesting the user

to use an external tool.

Wordpress “Codestyling localization” plugin

The Wordpress plugin “Codestyling localization”8 allows to generate and manage .po files for

Wordpress itself or any installed plugin in the Wordpress Admin Center, without need of an

external editor. It has a connection with Google Translate API or Microsoft Translator API to

help translation task.

5http://projects.gnome.org/gtranslator
6http://l10n.kde.org
7Ohloh is a public directory of Free and Open Source Software and the contributors who create and maintain

it. It belongs to BlackDuck Software (a consultant company dedicated to Open Source Software), and offers data

about the projects in its directory taken by analyzing their source code and SCM logs, and gathering opinions from

the users in the website.
8http://wordpress.org/extend/plugins/codestyling-localization/

Ohloh.net
http://projects.gnome.org/gtranslator
http://l10n.kde.org
 http://wordpress.org/extend/plugins/codestyling-localization/

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 55

Figure 6.2: Comparison between Poedit, Gtranslator, and Lokalize (by Ohloh.net)

Drupal localization system

The Drupal Content Management System has its own modules for translating the Drupal Core

and Drupal modules without using an external tool. Indeed, it is the recommended way for

localizing Drupal. This case is analyzed in detail in section 6.3.5.

6.3 Web frameworks for crowdsourcing translation

6.3.1 Pootle

Pootle9 is a libre software web framework developed to help the localization of software projects.

It was created by the group “Translate.org.za” and later integrated in the project “Wordforge”. It

uses many of the tools available in the “Translation Toolkit”, providing an easy web interface to

them, so the translator does not need any knowledge about how these tools work or their syntax

to obtain their benefits.

In figures 6.3 and 6.4 we can find a general overview of how a Pootle server looks like.

9http://translate.sourceforge.net/wiki/pootle

http://translate.sourceforge.net/wiki/pootle

56 CHAPTER 6. CASE STUDIES

Figure 6.3: Overview of a Pootle server (1)

Figure 6.4: Overview of a Pootle server (2)

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 57

Features

Pootle allows to organize the translation teams and the translation work, with the following

main features:

• It is easy to deploy since it is packaged for many distributions

• Allows many different file formats: bilingual formats (Gettext PO, XLIFF, Qt TS, TBX

and TMX) and monolingual formats (Java properties, Mac OSX strings, PHP arrays,

Subtitles in many formats)

• It has integration with control version systems, committing changes with a detailed mes-

sage which includes name of translator and number of translated strings.

• Show real-time translation statistics and link to the translation files for downloading them

and translating offline (Virtaal is the recommended tool).

• Several management features as create and manage teams (with goals associated), assign

work to various translators, roles and permissions, allow suggestions that need revision.

• Online Translation Editor implementing many of the revision checks using the “Trans-

late Toolkit”, machine translation, translation memory and terminology matching, and

showing the information that translators need: the location of strings in file, translator or

programmer comments, translation context.

Pootle is released under the GNU General Public License (GPL).

Requirements

Pootle needs a web server (Apache) and a database server to run (several databases are sup-

ported). It is written in Django, and uses the Translate Toolkit. Python, Python database bind-

ings and lxml (Python XLIFF support and HTML sanitation) are also required.

Documentation

There are many documents for the different roles using Pootle in the Pootle website, where a

list of external documentation can also be found.

58 CHAPTER 6. CASE STUDIES

Usage

The official Pootle server is pootle.locamotion.org, where Pootle is translated to 110

languages (see figure 6.5, as well as many other software projects.

Figure 6.5: The localization of the Pootle software

The webpage http://translate.sourceforge.net/wiki/pootle/live_servers

offers a wide list of other projects that use Pootle for managing localizations, among them:

• Python documentation is translated in pootle.python.org

• pootle.librezale.org is used for Basque translation projects

• translate.contribs.org is the Pootle server for localization of the SME Open

Source distribution

• Mozilla Verbatim (localize.mozilla.org) is a Pootle server for localizing Mozilla

websites and projects.

• Scratch programming language is translated to 50 languages in translate.scratch.

mit.edu

pootle.locamotion.org
http://translate.sourceforge.net/wiki/pootle/live_servers
pootle.python.org
pootle.librezale.org
translate.contribs.org
localize.mozilla.org
translate.scratch.mit.edu
translate.scratch.mit.edu

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 59

• BOINC (Open-source software for volunteer computing and grid computing) server and

client software are translated to 85 languages in https://boinc.berkeley.edu/

translate

• LibreOffice translations are managed in translations.documentfoundation.

org

• F-Droid project uses http://fdroid.org/translate

6.3.2 Weblate

Weblate10 is a web based translation tool with tight Git integration. It is developed by Michal

Čihař (PHPMyAdmin project leader) and licensed under GPL version 3. It pretends to be a

replacement from Pootle, taking out many of the less-used options, and improving the coordi-

nation with the Git SCM.

Features

The main features of Weblate are the following:

• Easy web based translation, including contextual information (see figure 6.6).

• Propagation of translations across sub-projects (for different branches)

• Every change is represented by Git commit, but on the other side it is possible to configure

an option LAZY COMMITS to group commits from same author into one if possible.

• All changes are committed to Git with correct authorship.

• Allows merging po files or automatically pull upstream changes.

• Wide range of supported translation formats (Gettext, Qt, Java, Windows, Symbian and

Android resources as experimental).

• It has consistency checks, although less than Pootle (some of them removed for simplic-

ity).

• It uses Django Administration Interface.

10http://weblate.org/

https://boinc.berkeley.edu/translate
https://boinc.berkeley.edu/translate
translations.documentfoundation.org
translations.documentfoundation.org
http://fdroid.org/translate
http://weblate.org/

60 CHAPTER 6. CASE STUDIES

Figure 6.6: Translation of PHPMyAdmin documentation to Greek, using Weblate

Requirements

Weblate needs a web server and a database server to run. It is written in Django, and uses the

Translate Toolkit, as Pootle. Other requirements are Python, GitPython, Django-registration and

Whoosh (Python indexing and search library).

Documentation

The documentation of the tool is in the website http://weblate.readthedocs.org

and mainly includes the usage guide (for translators), installation, configuration and adminis-

tration instructions (for the i18n team), the Weblate’s Web API, and a brief Frequently Asked

Questions. There is a demo server deployed in http://demo.weblate.org/.

Usage

Weblate is a very new tool (initial release on February 6th 2012), and as of June 13th 2012 it is

used for translating the projects lead by Michal Cihar (10n.cihar.com: phpMyAdmin, We-

blate itself and three more projects) and also for the Web-translation for LinuxCNC (computer

control of machine tools with Linux), at http://l10n.unpythonic.net/.

http://weblate.readthedocs.org
http://demo.weblate.org/
10n.cihar.com
http://l10n.unpythonic.net/

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 61

6.3.3 Transifex

Features

The main features of Transifex are the following:

• Support of many different file formats: Gettext files (.po, .pot), QT Linguist (.ts), Java

properties (.property), Android resources (.xml), Joomla lang packs (.ini), html, xhtml

and any strings over API.

• An extensive API to integrate tools with Transifex.

• Creation of language teams.

• Built-in Translation Memory storing translations and offering suggestions whenever a

sentence ”matches” prior translations.

• It is possible to label a project “Private” and hide it from public viewing.

• Built-in message system so translators and project managers may send each other notifi-

cations (received by email).

• View translation history, track changes and revert to older versions.

• Automatic daily pulls to public SCM repositories.

• Command-line client to manage large projects and automate your workflow.

Requirements

Transifex is written in Python, and needs a web server and a database server to run. Other

dependencies are Django, Gettext, and intltool (for dynamic POT-file generation).

Documentation

The website http://help.transifex.com offers a wide documentation for translators

and project managers, as well as detailed instructions on how to deploy your own Transifex

server.

http://help.transifex.com

62 CHAPTER 6. CASE STUDIES

Usage

Transifex is a Google Summer of Code (GSoC) success story [End11]. Dimitris Glezos devel-

oped Transifex for the Fedora Project in 2007, and later he re-wrote it from scratch to make

it more scalable and extensible. In 2008 he founded Indifex, to host Transifex SaaS platform

which in 2011 is used by 2.000 open source projects and 10.000 users, and offer support ser-

vices. In late 2011 they began to offer pricing plans for proprietary software projects, keeping

the software itself free, and free of charge hosting and support for libre software projects (fig-

ure 6.7).

Figure 6.7: Pricing plans in Transifex

Some relevant projects using Transifex for their translations are: The FreedomBox Foun-

dation (for their website), DoudouLinux (a Linux distribution for children), OpenTranslators

(translations for all open source projects that are related to Joomla!), OwnCloud, Zotero ci-

tations manager, the Fedora Project (including also websites and documentation), Universal

Subtitles (subtitling for online video), and many other.

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 63

6.3.4 Launchpad Translations (Rosetta)

Launchpad11 is the software forge developed by Canonical, initially to host the development of

Ubuntu Linux distributions, and later released as free software under the GNU Affero General

Public License, version 3. Launchpad includes Bazaar source code management system, a bug

tracking system, Ubuntu package building and hosting, and other kind of tools; among them we

can find Launchpad Translations (which former name was Rosetta).

Features

Launchpad takes benefit from crowdsourced translation. It has a simple web-based translation

and review, GNU GetText support and automatic suggestions from a library of sixteen million

translated strings.

• It is possible to choose how open your project is to new translators: open (everyone can

translate), partly restricted and structured (anyone can suggest translations, while trusted

community members review and approve new work), or closed (only approved translators

may make suggestions).

• The supported file formats are pot, po and mo (for offline as well as online translation),

and it is possible to import Mozilla’s XPI format.

• About licensing, it is required that all translations made in Launchpad are BSD licensed12

(so they can be part of Launchpad’s database and serve as suggestions to any kind of

project, as shown in figure 6.8).

• It has a good integration with the Bazaar source code management system, in the sense

that it allows automatic imports of templates from the Bazaar repository, and allows to

make regular commits to a Bazaar branch you specify for updating the translations made

via website (that commits overwrite the translation files present in the repository with the

ones from the website). It is also possible to manually upload and download the files.

11https://translations.launchpad.net/
12As explained in section 1.1.2, it is a permissive libre software license, in which the four freedoms are stated

and not additional conditions are imposed to the user

https://translations.launchpad.net/

64 CHAPTER 6. CASE STUDIES

Figure 6.8: Launchpad suggestions from other projects

• For translators, Launchpad acts as a central repository, in the sense that your Launchpad

user account is associated with the languages that you choose to translate, and then, you

choose the projects where to contribute (upstream projects, or the Ubuntu distributions).

• Launchpad shows statistics of translations, to give an overview of the status of each

project, language or file (see figure 6.9).

Figure 6.9: Launchpad translation statistics

6.3. WEB FRAMEWORKS FOR CROWDSOURCING TRANSLATION 65

Documentation

The Documentation for users of Launchpad translations is in the website https://help.

launchpad.net/Translations, integrated with the general Help of Launchpad.

Usage

As of June 13th, 2012, Launchpad database stores 1,923,617 strings in 33,465 translation tem-

plates, in 332 languages. There are 63,724 translators registered and 42 translation groups. It is

possible to contribute to the translation of the Ubuntu Linux distributions version 6, 8, 9, 10,

11 and 12; and also to 1,470 projects, among them the OpenShot Video Editor, the OpenERP

Server, Web and Add-Ons, Blender Animation Design software, the Linux Mint Distribution,

the Astronomer’s program Stellarium, and many others.

6.3.5 Drupal localization system

Drupal13 is a Content Management System with a very modular infrastructure. It is written in

PHP and both Drupal core and Drupal modules manage localization in the same way.

In table 6.1 some quick statistics can be found about localization in Drupal.

Name of the project: Drupal

Main website: http://drupal.org

I18n website: https://localize.drupal.org

Number of languages: 103 translation groups

Translation team(s) and coordina-

tor(s):

Each team has its own organization

L10n tools/platform: localize.drupal.org

+ Localization Update Module

Contributors and modules 4,200 contributors, 8,247 projects

Table 6.1: Summary of Drupal localization

13http://drupal.org

https://help.launchpad.net/Translations
https://help.launchpad.net/Translations
http://drupal.org
https://localize.drupal.org
localize.drupal.org
http://drupal.org

66 CHAPTER 6. CASE STUDIES

Internationalization work

Drupal recommends to follow the internationalization guidelines to make easy the localization

of any piece of software.

The objects to be localized in Drupal are the following:

• Text showed to the “Drupal Administrator” in the installation process and Administration

Dashboard and tasks. This strings are part of the Drupal PHP code and usually can be

found in the corresponding .pot templates. For new developments, it is recommended

to abstract these kind of text from the rest of the code using the t() function.

• Text that are showed to the user or visitor of a website and messages. For example, labels

showing “Site map”, or “Home” in a frontpage, “Next” or “Read more” when showing a

list of different pieces of content. These strings are “configurable” in the deployed Drupal

Administration Site. For Drupal developers, it is recommended to offer a default English

string for all these kind of fields, which should be also internationalized using the t()

function, and then can be easily localized in order to provide “localized default strings”

to the deployed Drupal websites.

About Drupal infrastructure for localization, Drupal was using CVS as control version sys-

tem but in the beginning of 2011 they migrated to Git. Along with this change, other different

(but related) decision was made: start to use their own web platform http://localize.

drupal.org to manage translations [new10]. Although the translation was going to keep on

using .po files, this approach separates the “code development” and the “translation develop-

ment”. The main positive aspect is that they can attract many new translators that are Drupal

users but don’t know anything about developing, git and po files. On the other hand, if anybody

goes to the git repositories to get all the Drupal code, she will not find the translation files there.

Localization work

On translators side, Drupal offers the “Localization update” module (http://drupal.org/

project/l10n_update) to deploy in the Drupal websites and make easy translation, the

localize.drupal.org website where it is possible to join a team, online translate and

review translations, and a synchronization system to retrieve translations from users Drupal

http://localize.drupal.org
http://localize.drupal.org
http://drupal.org/project/l10n_update
http://drupal.org/project/l10n_update
localize.drupal.org

6.4. TRANSLATION PROJECTS AND TEAMS 67

websites, and send them the reviewed and accepted strings (using the Localization update mod-

ule).

Maintenance and Quality Assurance

Suggestions are not be included in downloadable translations, and will need to be approved by

an authorized user before becoming a translation.

6.4 Translation projects and teams

6.4.1 GNOME

GNOME Project14 is a community that develops a GNU/Linux graphical desktop environment.

GNOME is one of the most used graphic desktops in GNU/Linux systems. The project

includes not only window manager and system administration tools, but a complete set of ap-

plications for many different purposes as text editor, multimedia player, web browser and email

client, CD recorder...

The main site of the project is http://live.gnome.org, and the information about lo-

calization can be accessed in “Damned Lies” web platform (http://l10n.gnome.org/).

GNOME software uses GTK+ development kit, which works with some tools for interna-

tionalization as gettext, and produces PO files.

The GNOME source code is managed with git repositories. Damned Lies has no git support

so the changes have to be manually committed to the git repositories by the translators with git

access.

Table 6.2 provides a summary of the localization of the project.

The localization workflow in GNOME

Gil Forcada, with the feedback from other community members, conducted a GNOME I18N

Survey in August 2010, by sending a questionnaire to every GTP (GNOME Translation Project)

language coordinator, and collecting answers. From that results[For10] and the information

provided in the GNOME website, we have drawn the localization process:

14http://gnome.org

http://live.gnome.org
http://l10n.gnome.org/
http://gnome.org

68 CHAPTER 6. CASE STUDIES

Name of the project: GNOME

Main website: http://gnome.org

I18n website: https://live.gnome.org/

TranslationProject

Number of languages: 178 registered; 50 released[Kov12]

Translation team(s) and coordina-

tor(s):

Christian Rose, Mario Blättermann, Gil For-

cada, Gabor Kelemen, Andre Klapper, Petr Kovar,

Claude Paroz, Johannes Schmid, Simos Xenitellis,

Wouter Bolsterlee, Og Maciel

L10n tools/platform: Damned Lies http://l10n.gnome.org

Table 6.2: Summary of GNOME localization

1. Objects to be localized: modules, documentation. Both are in gettext portable object

format (.po files).

2. Internationalization framework: mailing lists, language teams with coordinators, lo-

calization guide (general), GNOME Documentation Style Guide, Git access for manually

committing changes to the repository. There is additional information provided for devel-

opers: Handling String-Freezes, Translation Coverage Statistics for your module

3. Localization framework: all teams use mailing list for coordination, and most of the

teams have glossaries and translation guidelines. To keep track of translation issues most

use bugzilla and/or Damned Lies.

4. Quality and maintenance: 19 out of 36 teams (52%) pass QA tools before commit-

ting. 19 out of 36 teams (52%) start working around string freeze (1 month before next

GNOME release). Some scripts for helping QA and maintenance are developed and pro-

vided in https://live.gnome.org/TranslationProject/Scripts

Other remarkable aspects

• Teams range from 1 or 2 to +15 members (average to 3 members per team)

• Nearly all work is made by volunteers (only 2 or 3 teams have paid members)

http://gnome.org
https://live.gnome.org/TranslationProject
https://live.gnome.org/TranslationProject
http://l10n.gnome.org
https://live.gnome.org/TranslationProject/Scripts

6.4. TRANSLATION PROJECTS AND TEAMS 69

• There’s a good relation with downstream translators (Ubuntu, Fedora, and other GNU/Linux

distros)

6.4.2 KDE

KDE15 is other of the most used graphic desktops in GNU/Linux systems. As GNOME, the

project includes not only window manager and system administration tools, but a complete set

of applications for many different purposes as text editor, multimedia player, web browser and

email client, CD recorder. . . The main site of the project is http://www.kde.org, and the

information about localization can be accessed in the web http://i18n.kde.org.

KDE software uses Qt development kit, and PO files for localization. Parts of text are some-

times presented to the user in special format as bold or italic, title sized, etc with XML-like text

markup.

The KDE source code is managed with Subversion repositories.

KDE uses custom tools to internationalize the GUI and documentation of programs. gettext,

and produces PO files.

Table 6.3 provides a summary of the localization of the project.

Name of the project: KDE

Main website: http://kde.org

I18n website: http://l10n.kde.org

Number of languages: 52 (released)[Ast12]

Translation team(s) and coordina-

tor(s):

Albert Astals

L10n tools/platform: Lokalize

Table 6.3: Summary of KDE localization

The localization workflow in KDE

Based on the available information in KDE website, and in particular in the Localization web-

page [KDE12], we have drawn the localization process:

15http://kde.org

http://www.kde.org
http://i18n.kde.org
http://kde.org
http://l10n.kde.org
http://kde.org

70 CHAPTER 6. CASE STUDIES

1. Objects to be localized: user interface, documentation. Both are in gettext portable object

format (.po files) and sometimes have XML-like markup for text font and style. A guide

for localization of non text resources is available at http://techbase.kde.org/

Localization/Concepts/Non_Text_Resources

2. Internationalization framework: mailing lists, language teams with coordinators, Tech-

base Localization Tutorials, SVN access for manually committing changes to the reposi-

tory.

3. Localization framework: all teams use mailing list for coordination. The main tool for

localization is Lokalize, a computer-aided translation (CAT) tool, a full-featured GUI

application, written from scratch using KDE4 framework. Aside from basic editing of PO

files, it integrates support for glossary, translation memory, project managing, etc.

4. Quality and maintenance: Lokalize supports diff-modes for QA. Other tools for QA are

recommended as Lbundle Checker for tracking changes on non-text localized resources,

Translate Toolkit and Pology.KDE teams use “Ascription” system for reviewing transla-

tion work and include that information in the control version system. Details of the As-

cription Workflow are given in http://techbase.kde.org/Localization/

Workflows/PO_Ascription.

Other remarkable aspects

In section B.3 the reader will find an interview to the internationalization team coordinator in

KDE, Albert Astals.

6.4.3 Debian

Debian16 is “the universal operating system”, a multi-architecture software distribution that

ships Linux or Hurd kernel, the GNU Project software, different desktops and many software

packages for multiple purposes.

Table 6.4 provides a summary of the localization of the project.

16http://www.debian.org

http://techbase.kde.org/Localization/Concepts/Non_Text_Resources
http://techbase.kde.org/Localization/Concepts/Non_Text_Resources
http://techbase.kde.org/Localization/Workflows/PO_Ascription
http://techbase.kde.org/Localization/Workflows/PO_Ascription
http://www.debian.org

6.4. TRANSLATION PROJECTS AND TEAMS 71

Name of the project: Debian

Main website: http://www.debian.org

I18n website: http://www.debian.org/

international

Number of languages: 70 (Debian-installer stable release)[Per12b]

Translation team(s) and coordina-

tor(s):

Christian Perrier

L10n tools/platform: No particular tool recommended

Table 6.4: Summary of Debian localization

The localization workflow in Debian

Based on the available information in the Debian website, we have drawn the localization pro-

cess:

1. Objects to be localized: The Debian localization projects focus on translation of the in-

stallation system (the “debian-installer”), Debian documentation, Debian webpages and

wiki pages, and Debian-related packages (specific Debian tools as dpkg package man-

ager). They also translate the “debconf templates”: messages presented to the user when

a new package is installed to the system17.

2. Internationalization framework: Each language has a localization team which uses a

wiki and a mailing list to handle the work. There is a robot that listens to the l10n mail-

ing lists, and understands pseudo-urls in the subject header. The pseudo-urls have a cer-

tain form, including tags for the coordination of translations: ITT (Intent To Translate),

RFR (Request for Review), LCFC (Last Chance for Comments), BTS#bug number or

DONE#bug number. Changes are uploaded to the repositories by package maintainers
17Although it is recommended that all the translation issues related to non-specific Debian packages should be

submitted to upstream projects, we can consider several exceptions, for example packages that are substantially

modified from the original source code prior to include them in the Debian distribution. Some of them are the

Mozilla suite of applications (Firefox web browser which becomes “Iceweasel” in Debian, Thunderbird email

client that ships as “Icedove”, Lightning calendar as Iceowl, and others). Due to this modification, additional

localization packages are created and maintained (or not) by the Debian community. This means that you can find

the original program translated to certain languages, but not the related Debian package (an example of this is

Iceowl, with no translation to Spanish, although the upstream Lightning has Spanish localization).

http://www.debian.org
http://www.debian.org/international
http://www.debian.org/international

72 CHAPTER 6. CASE STUDIES

(translators send the files to upload to the Bug Tracking System with the category of

’wishlist’). All the localization teams are coordinated by the Christian Perrier, who has

permissions to update the repositories if package maintainer is missing in action.

3. Localization framework: all teams use their mailing list for coordination. There is no

particular recommended tool for translations.

4. Quality and maintenance: Quality of translations is ensured by the mailing list coordi-

nation and peer review.

Other remarkable aspects

• Christian Perrier, translation coordinator, maintains a blog [Per12a] where he periodically

writes about the process of localization in Debian. In 2011 he was interviewed by Raphael

Hertzog (another Debian Developer) [Her11].

• In section B.4 the reader will find an interview to Javier Taravilla, member of the Spanish

localization team in Debian.

6.4.4 Tux Paint

Tux Paint18 is a libre software drawing program for children ages 3 to 12. It is used in schools

around the world as a computer literacy drawing activity. It combines an easy-to-use interface

and fun sound effects.

In June 9, 2012, Tux Paint turns 10 years old.

The main site of the project is http://www.tuxpaint.org, and the information about

localization can be accessed in the “Help Us Translate” web page (http://www.tuxpaint.

org/help/po/).

Tux Paint is mostly written in C and uses gettext for internationalization, producing POT

and PO files.

Table 6.5 provides a summary of the localization of the project.

18http://www.tuxpaint.org

http://www.tuxpaint.org
http://www.tuxpaint.org/help/po/
http://www.tuxpaint.org/help/po/
http://www.tuxpaint.org

6.4. TRANSLATION PROJECTS AND TEAMS 73

Name of the project: Tux Paint

Main website: http://tuxpaint.org

I18n website: http://www.tuxpaint.org/help/po/

Number of languages: 85

Translation team(s) and coordina-

tor(s):

Bill Kendrick (Lead Developer)

L10n tools/platform: None / Official Pootle Server (for some languages)

Table 6.5: Summary of Tux Paint localization

The localization workflow in Tux Paint

Based on the information provided in the Tux Paint website, we have drawn the localization

process:

1. Objects to be localized: application, stamps add-on, configuration, website, documenta-

tion. All of them are in gettext portable object format (.po files), except documentation

that it is in plain text or HTML format.

2. Internationalization framework: there is a mailing list for i18n. The website includes

information about how to begin translation. Translator without commit access to the

repository should email the translated files to Bill Kendrick (Lead Developer).

3. Localization framework: all teams use mailing list for coordination. Some teams use the

Official Pootle Website for managing translations (http://pootle.locamotion.

org/projects/tuxpaint/).

4. Quality and maintenance: There is no official information about this topic in Tux Paint

website.

Other remarkable aspects

• Tux Paint users who use languages requiring their own fonts can download pre-packaged

TrueType Fonts for Tux Paint.

• There is a webpage19 dedicated to mention the most important contributors to Tux Paint,

19http://www.tuxpaint.org/developers

http://tuxpaint.org
http://www.tuxpaint.org/help/po/
http://pootle.locamotion.org/projects/tuxpaint/
http://pootle.locamotion.org/projects/tuxpaint/
http://www.tuxpaint.org/developers

74 CHAPTER 6. CASE STUDIES

which includes a specific mention to Fabian Franz for his work internationalizing the

code.

6.4.5 Pleft

Pleft20 is a web platform for planning appointments in a collaborative way. Once you register

an account in their website, you can create a meeting, defining the title, description, proposed

date and hour, and list of participants. Each participant will receive an email with a link to the

meeting, where she can state her availability for each proposed date, and suggest alternative

dates.

Table 6.6 provides a summary of the localization of the project.

Name of the project: Pleft

Main website: http://www.pleft.com

I18n website: https://www.transifex.net/

projects/p/pleft/

Number of languages: 9 (7 in the stable release)

Translation team(s) and coordina-

tor(s):

Nobody (Sander Dijkhuis, project leader)

L10n tools/platform: Transifex

Table 6.6: Summary of Pleft localization

The localization workflow in Pleft

Based on my own experience contributing to Pleft translations in Appendix C, I have drawn the

localization process:

1. Objects to be localized: Server strings, Website client strings, Android client strings,

Email texts, Marketing material

2. Internationalization framework: Pleft is developed in Python, and uses Django tem-

plates [Fou12a] for internationalization of server and client text strings. Pleft developers

20http://www.pleft.com

http://www.pleft.com
https://www.transifex.net/projects/p/pleft/
https://www.transifex.net/projects/p/pleft/
http://www.pleft.com

6.4. TRANSLATION PROJECTS AND TEAMS 75

have created a project in Transifex web localization platform to allow everybody to col-

laborate in translations (see figure 6.10). Pleft developers are the ones in charge of ap-

prove the creation of new language teams. There is no internationalization coordinator

nor mailing list specifically created for internationalization or localization. However, the

Transifex platforms includes a built-in message system that can be used for these kind of

communication. Marketing material is not handled using Transifex. Project leader con-

tacts by email or by the Transifex platform to the language teams and send the texts to be

translated. There are no public internationalization guidelines specific por Pleft.

3. Localization framework:As of June 9th, 2012, Pleft is released in the following lan-

guages: English, French, German, Italian, Russian, Dutch, Spanish. In Transifex platform

there are 2 more teams: Spanish (Castillian) and Swedish. There are no specific localiza-

tion guidelines, the project trust on Transifex platform. If localization teams need to get

their translations integrated in a live, test site, they can ask for it to the project leader.

4. Maintenance and Quality Assurance: Transifex allows to handle translation reviews

and also has a built-in spell checker. In addition to this, it shows the context information

of each translation string in a tab called “details”: String ID, Description (but this field

is not fulfilled), Comment (also usually empty), Occurrences (linking to the source code

files). There is no specific treatment for bugs related to localization. General issue tracker

may be used. To test or deploy translations, it is needed to install gettext and run python

pleft/manage.py mo. New versions of internationalization files may appear and lo-

calization teams not being aware of them, since there is not an internationalization mailing

list or communication channel to get subscribe yourself.

6.4.6 The power of open21: The Debian Administration Handbook

The Debian Administration handbook is the English translation of the “Cahier de l’admin De-

bian”, a book written by Raphael Hertzog and Roland Mas, two Debian Developers with a

large career of contributing to the Debian project. This book was printed initially with Eyrolles,

a French “traditional” editor, which holds the copyright of the work.
21Note: “The Power of Open” (http://thepowerofopen.org/) is the title of a book collecting successful

stories of creators sharing knowledge, art, and data using Creative Commons licenses in their works.

http://thepowerofopen.org/

76 CHAPTER 6. CASE STUDIES

Figure 6.10: Overview of Pleft translations in Transifex

However, authors of the book wanted to translate the book into English and republish it

under a free license, so all the Debian community would benefit. They set up a crowdfounding

project to gather the required money to pay their translation work, so authors would be free to

offer the new version of the book as free, redistributable, translatable and modifiable work.

Several months after they created the crowdfounding project, the “liberation fund” was

reached. In May 10th the book was released under a CC-BY-SA licensed and freely (with no

cost) available as electronic book in its website. In addition to this, sources were published in

one of the Debian project git repositories, and a Debian package for installing the book (down-

loading it and creating a start menu shortcut) was uploaded to “Sid”, the Debian version created

to receive new software from upstream and test before integrate it in the more stable releases.

After this work well done, authors of the book couldn’t event take two weeks vacation:

Debian community gave a warm welcome to liberation of this book and even before than its

website was updated including instructions for translation in the “Contribute” section, several

localization teams had been already created to handle the localization to their respective lan-

guage, setting up clone repositories, mailing list or other kind of communication channels, and

committing the first changes with translation to them.

In May 23rd, Raphael Hertzog, acting as a kind of benevolent dictator, sent a mail to several

people that contacted him about how to translate the book, and he explained how the localization

6.4. TRANSLATION PROJECTS AND TEAMS 77

should be done and created a mailing list in the Debian project to coordinate the work. He also

updated the website including this information (figure 6.11).

Figure 6.11: Information about Translations in the Debian Administration Handbook’s website

That action has been vital in order to integrate the localization of the book with the general

project and avoid unneeded forks that would become difficult to maintain and update when new

versions of the book are released.

The localization workflow in “Debian Administration Handbook”

1. Objects to be localized: text, screenshots, diagrams.

2. Internationalization framework: mailing lists, coordinator for each language, git repos-

itory for changes, Publican for the generation of templates to translate, instructions on

how to contribute to the project.

3. Localization frameworks: each team may organize themselves as they want. Spanish,

Russian and German are some of the languages that set up a localization framework

before the book’s authors detailed the internationalization and localization framework.

4. Quality and maintenance: git branches, git rebase before pushing changes, participation

of original authors, that are also translators since they did the French to English translation

78 CHAPTER 6. CASE STUDIES

before the release of the book as free culture. Several localization teams are thinking about

using Weblate as web translation platform, which includes a set of tests for Translation

Quality Assurance.

Other remarkable aspects

Although the infrastructure for internationalization and localization (Git repository, mailing

lists) are deployed inside the Debian community (the Alioth forge), currently the project is

treated as one more upstream project, in the sense that it has its own translation teams apart

from the Debian i18n and l10n teams.

Chapter 7

Conclusions

7.1 Evaluation

In chapter 3, I have explained the different phases of localization process, describing tasks, tools

and people involved. A minimum set of two examples for each phase has been given, and new

trends have been covered, as the XLIFF standard format, the use of collaborative models and

web based tools (some of them released recently as Weblate).

Origin and motivations for people getting involved in libre software translations have been

explained in section 3.6.

Chapter 4 analyzed the benefits that caring about localization brings to the libre software

community and society in general, and in chapter 5 some examples of possible internationaliza-

tion and localization problems, to take into account, were explained.

A variety of software projects that carry out localization task and tools for supporting that

processes have been provided, as well as personal experiences of different translators.

We can conclude that a panoramic view of the localization in libre software projects has

been presented, and the reader may understand the complexity and diversity of the processes,

but also feel there are many opportunities to get engaged and take benefit of libre software.

79

80 CHAPTER 7. CONCLUSIONS

7.2 Lessons learned

7.2.1 Key aspects of localization in libre software projects

• Libre software communities have set up a wide range of tools to help the localization

process.

• The communication channels and coordination between the different teams is crucial and

can be boosted with automation, but “human touch” is still needed.

• Allowing external contributions, if specific guidelines are provided, may improve quan-

tity and quality of translation, as well as produce other kind of benefits for the business

environment and society in general.

• As conclusion, we can say that internationalization and localization in libre software

projects are two of their most interesting advantages for dissemination, competition with

privative alternatives, and penetration in new markets.

7.2.2 What did I learn

• Gathering information about how localization is performed in the different libre software

projects helped my own evolution as translator and improved the quality of my transla-

tions, since I had more knowledge and resources to use.

• There are very new and powerful translation platforms (for example Transifex) that are

taking advantage of the traditional and quality internationalization tools as Gettext. This

made me value the internationalization effort developed by the libre software communi-

ties in the “early years”.

• Libre software projects is not just about “coding”. Many people are involved in localiza-

tion of libre software, with very different ranges of commitment, but they are part of the

community and their work is better understood and considered each day.

7.2. LESSONS LEARNED 81

7.2.3 Knowledge and skills acquired in the M.Sc. studies that helped me

on this work

• Introduction to libre software and Legal aspects of libre software provided the basic

framework to understand how libre software works and its history and evolution along

the years. Now I know that the software license may be applied for example to translation

files, and to certain parts of documentation that are released altogether with the software,

but translation memories or glossaries used for performing localization tasks may be re-

leased as free cultural works or not, since they are different works from the localization

files.

• Economic aspects of libre software made me discover the different motivations of indi-

viduals, companies, public administrations, academic and research institutions, non profit

organizations... to get involved in free software in general, and in translation in particular.

Having a program localized to a certain language may open new markets or new business

or may be used as a way of political or cultural activism.

• Communities subject gave me the tools and skills needed to perform data mining on

software repositories. Although this kind of approach has not been used in this work, I

know how this can be done so I have been able to draw a possible empirical approach in

section 7.3.

• Project evaluation, Project management and Developers and motivation subjects made

possible for me to assess software projects as a whole, taking into account not only the

code or how the software works, but also how is the community, which roles and processes

are involved and on which people they depend. I also learned that good documentation

and communication channels are key aspects for reaching new contributors and sustain-

ability of the projects.

• In Case Studies I and Development and tools, I learned how to use Git, the control ver-

sion system that I used to keep track of the history of changes to this document, and helped

me to contribute translations in Android software projects in the last months. Advanced

Development helped me to better understand how Android applications are developed

82 CHAPTER 7. CONCLUSIONS

and encourages me keep being involved in F-Droid project, and try to help on the inter-

nationalization pending work.

• Thanks to Case Studies II subject, I met some translators (Pedro Garcı́a, Albert Astals)

that kindly accepted to be interviewed for this work. I also met in depth the GNOME and

KDE desktops which localization systems are analyzed in chapter6.

• Systems Integration subject in conjunction with the interview to Miguel Vidal as OpenBSD

translation coordinator gave me the idea of keeping track of the history of the Debian Ad-

ministration Handbook, and its predictable explosion of translation works after it was

released with a free cultural work license.

7.3 Future work

7.3.1 More on localization results as free culture works

Some examples of standardized, quality translation results delivered to the public have been

introduced in section 4.3.3; they are driven mostly by Public Administrations, since the profes-

sional translation world is usually reluctant to provide their translation memories to the com-

munity.

The community work on translations usually provide results with lack of standardization in

translation formats: PO, PHP, CSV, XLIFF... This makes difficult the re-utilization of transla-

tions.

It could be interesting to continue the research in order to learn what kind of measures can

be taken in order to overcome this limitation and increase the reusability of translations.

7.3.2 Apply libre software techniques to cultural works localization

There are other kind of projects, different than software, that are using similar processes and

tools for localization, and taking also benefit of the increment of productivity. Among them,

we have for example the collaborative project for subtitle translations of TED Talks1, or the

translations within Wikimedia projects2.
1http://www.ted.com/pages/287
2http://meta.wikimedia.org/wiki/Translation

http://www.ted.com/pages/287
http://meta.wikimedia.org/wiki/Translation

7.3. FUTURE WORK 83

7.3.3 Mining for localization in libre software projects

Due to the availability of the source code of libre software projects, and the fact that many

of them use an SCM (Source Code Management) system that keeps track of the history of

changes to all the files, it is possible to inspect the source tree or mine the SCM logs to get

information about the software. This would provide factual details about how localization is

driven and may even throw hints about vulnerabilities in the process (as, for example, long-time

untouched translation files with may mean that there are parts of the project that are outdated or

unmaintained).

In Appendix D an initial analysis have been performed on Tux Paint project to show how

this mining could be done. Some metrics and results are presented, although a much more in-

depth research would be needed, specially if we want to compare the situation of two or more

different projects.

84 CHAPTER 7. CONCLUSIONS

Appendix A

Libre software tools for localization

Libre software communities use libre software tools to carry out their localization tasks.

Mata [Mat08] has researched about the presence of free software in the IT environments

used by translators in general (not necessary translating libre software). Cánovas [CS08] and

Dı́az-Fouces [Fou08] show that there are mature, libre software tools that they can use. Some of

them have been already introduced as case studies. Other applications can be found in directo-

ries in [FA11] and [Cor11]. In this appendix we provide a list contained all the tools mentioned

in this document, and other among the most relevant tools, based on former referenced litera-

ture.

Damned Lies l10n.gnome.org

Drupal localization localize.drupal.org

Gettext www.gnu.org/software/gettext

Gtranslator projects.gnome.org/gtranslator

Launchpad www.launchpad.net

Lokalize l10n.kde.org

Poedit www.poedit.net

Pootle translate.sourceforge.net/wiki/pootle

The Translate Toolkit translate.sourceforge.net

Transifex www.transifex.net

Virtaal translate.sourceforge.net/wiki/virtaal

Weblate weblate.org

Table A.1: List of the localization tools analyzed in this work

85

l10n.gnome.org
localize.drupal.org
www.gnu.org/software/gettext
projects.gnome.org/gtranslator
www.launchpad.net
l10n.kde.org
www.poedit.net
translate.sourceforge.net/wiki/pootle
translate.sourceforge.net
www.transifex.net
translate.sourceforge.net/wiki/virtaal
weblate.org

86 APPENDIX A. LIBRE SOFTWARE TOOLS FOR LOCALIZATION

Anaphraseus anaphraseus.sourceforge.net

Apertium www.apertium.org

bitext2tmx bitext2tmx.sourceforge.net

Jubler www.jubler.org

Mozilla Firefox useful plugins:

WordReference, Answers.com

(dictionary and thesaurus),

QuickTranslation, Converter, FoxLingo addons.mozilla.org

Okapi Framework: Rainbow,

Olifant, Album, Tikal, Abacus okapi.sourceforge.net

OmegaT www.omegat.org

OmegaT+ omegatplus.sourceforge.net

OpenLanguage Tools open-language-tools.java.net

OpenTrad www.opentrad.com

Subtitle Edit www.nikse.dk/SubtitleEdit

TranslateWiki translatewiki.net

Transprocalc code.google.com/p/transprocalc

Wordforge sourceforge.net/projects/wordforge2

Table A.2: List of other localization tools

anaphraseus.sourceforge.net
www.apertium.org
bitext2tmx.sourceforge.net
www.jubler.org
addons.mozilla.org
okapi.sourceforge.net
www.omegat.org
omegatplus.sourceforge.net
open-language-tools.java.net
www.opentrad.com
www.nikse.dk/SubtitleEdit
translatewiki.net
code.google.com/p/transprocalc
sourceforge.net/projects/wordforge2

Appendix B

Interviews to translators

B.1 Miguel Vidal, OpenBSD Spanish Documentation

1.- Please introduce yourself and explain how and when did you start with libre software

translations.

Since 1999, I have been involved in the Spanish-speaking free software community and

other open source software projects related to Linux, OpenSolaris and (more recently) OpenBSD.

I’ve been working as a Linux and Unix System Administrator since 2001. I’m focusing mainly

on architecture design and server deployments with Unix and Linux systems.

My contributions to free software translations has been really humble and short. It all comes

down to being in charge of the Spanish translation of the OpenBSD documentation1.

Furthermore, I made a few FLOSS translations ten years ago. For example, I contributed to

Catalan translation of GNU nano23, a text editor designed as a free replacement for Pico. But

these were only occasional contributions.

2.- Which tools are available/recommended in the project to help translators? Which

ones do you use? (For example, there is a Pootle server but you usually download the PO

file and translate it offline).

I’m translating web documentation, not source code. So, I don’t work over .po files, but

1http://www.openbsd.org/translation.html
2http://svn.savannah.gnu.org/viewvc/trunk/nano/THANKS?revision=693&root=

nano&view=markup
3http://svn.savannah.gnu.org/viewvc/trunk/nano/po/ca.po?revision=

547&root=nano&view=markup

87

http://www.openbsd.org/translation.html
 http://svn.savannah.gnu.org/viewvc/trunk/nano/THANKS?revision=693&root=nano&view =markup
 http://svn.savannah.gnu.org/viewvc/trunk/nano/THANKS?revision=693&root=nano&view =markup
 http://svn.savannah.gnu.org/viewvc/trunk/nano/po/ca.po?revision=547&root=nano&vi ew=markup
 http://svn.savannah.gnu.org/viewvc/trunk/nano/po/ca.po?revision=547&root=nano&vi ew=markup

88 APPENDIX B. INTERVIEWS TO TRANSLATORS

HTML files. My environment consists of the following tools:

• A text editor (’Vim’)

• A ’diff’ tools

• An HTML link checker (’linkchecker’)

• An HTML validation program (’validate’)

• A CVS client for commits (yep, OpenBSD project uses a CVS repository)

3.- Is there a translation team in the project? Which are the revision processes? Do you

focus on revision or on translating the untranslated strings?

Yes, there is a translation team coordinated by Antoine Jacoutot and Benoit Lecocq. Fur-

thermore, each project translation has a person responsible who facilitates sporadic contribu-

tions/contributors, checks quality translations and makes commits. So, as Spanish responsible,

I have to face both issues: revision and translating/updating the untranslated things.

4.- Since you started to get involved in this project, did you increase your contributions

to libre software? (For example, translating more languages, doing other kind of contri-

butions to the project as bug reporting or programming code, or participating in other

libre software projects as translator...)

Yes, maybe since then I have been more involved in the OpenBSD community, I’ve made

some patch and bug report, etc.

5.- Which are the benefits you perceive for contributing in libre software translations?

Any bad counterparts?

Benefits are to participate and contribute to free software community without being a devel-

oper/hacker. Also, in OpenBSD case, read and learn from their great documentation.

The counterpart is that it’s a hard, steady work, lonely and often undervalued. Maintaining

the translation up to date is critical: offering outdated information will just misguide people. So

you must think if you really will be able to dedicate regularly to the translation work.

6.- Which are your future plans?

I would like to continue to keep up to date Spanish translation. When I took care of Spanish

translation in 2010, it was orphaned since six years ago! So, there is much work to do. It’s a

long term job.

B.2. PEDRO GARCÍA, SUPPORT MOZILLA MESSAGING (SUMOMO) 89

7.- Anything else you may say?

The OpenBSD project aims to maintain many high standards, one of them is to supply users

with excellent documentation. A documentation error (or lack) is considered a serious bug and

treated as harshly as any other serious bug. Thus, helping in such demanding project is a great

challenge and a big responsibility. I’m very proud to do my bit.

B.2 Pedro Garcı́a, Support Mozilla Messaging (SuMoMo)

1.- Please introduce yourself and explain how and when did you start with libre software

translations.

Hi! My name is Pedro Garcia Rodriguez and I’m part of the Mozilla SuMoMo, SuMo, l10n

and Mozilla-Hispano communities.

2.- Which tools are available/recommended in the project to help translators? Which

ones do you use? (For example, there is a Pootle server but you usually download the PO

file and translate it offline).

Almost everything I do translating software for Mozilla is done via a special wiki, called

KitSune. . . developed by Mozilla to provide support to their users. It’s easy to use so this is

what makes it powerful but doesn’t have the utilities that for example can have other translation

utilities.

The part of my work that is not done via KitSune is done via Pootle. . . so here is where I

stop translating. . . I hate Pootle and PO files. . .

3.- Is there a translation team in the project? Which are the revision processes? Do you

focus on revision or on translating the untranslated strings?

Mostly all my work is done translating new articles or updating old ones. . . I find difficult

done my on translations, revision them and accept them. . . I told you this because doing every-

thing is not a hard work but after reading and writing, reading and writing, reading and writing,

you start to fail seeing your own errors so I leave this part of the work to the “revision team” of

Mozilla-Hispano.

Even if I am making a revision of an article and make changes I send it to a different person

to not avoid my mistakes. . .

4.- Since you started to get involved in this project, did you increase your contributions

90 APPENDIX B. INTERVIEWS TO TRANSLATORS

to libre software? (For example, translating more languages, doing other kind of contri-

butions to the project as bug reporting or programming code, or participating in other

libre software projects as translator...)

I started on this while I was bored in my room alone in Madrid. . . I’m from Pontevedra and

I’m alone here in Madrid so I decided to do something useful and different. . .

I started the Galician translation of SuMoMo.

5.- Which are the benefits you perceive for contributing in libre software translations?

Any bad counterparts?

The work that I am doing as translator and being an active member of the Mozilla Hispano

community allow me travel the world. . . I have been in Berlin, Prague. . .

I missed the Wishtler Summit last year and in two months I will be in Buenos Aires. . . That’s

the reward for the work I’ve done all these years.

6.- Which are your future plans?

Quit translation!!!! Right now I have in mind contributing in a different way so when I

complete the 100% of the Spanish translation of SuMo. . . I’m done!!!

So probably I will try to move to the IT part of Mozilla.

7.- Anything else you may say?

Nothing. . . Good luck!!! with your Master Thesis!!

B.3 Albert Astals, KDE

1.- Please introduce yourself and explain how and when did you start with libre software

translations.

Hi, my name is Albert Astals Cid, I’m from L’Hospitalet de Llobregat in Spain. I have been

collaborating with the KDE project since 2002 when I started improving Catalan translations

for kdeutils, the KDE utilities package.

2.- Which tools are available/recommended in the project to help translators? Which

ones do you use? (For example, there is a Pootle server but you usually download the PO

file and translate it offline).

In KDE we recommend the usage of Lokalize4 as a GUI editor for .po files but you can use

4http://userbase.kde.org/Lokalize

http://userbase.kde.org/Lokalize

B.3. ALBERT ASTALS, KDE 91

any editor you want, we are not strict about that. Besides that we have a script that each night

processes all the code, creates/updates the .pot files, and merges the existing .po translations

with the new .pot files. We also have a few additional scripts that run to ensure the validity

of the translations like pology sieves5. We also have a webpage http://l10n.kde.org

where you can check the statistics of the languages translates and serves as point of contact for

the people that want to engage with the team.

3.- Is there a translation team in the project? Which are the revision processes? Do you

focus on revision or on translating the untranslated strings?

KDE is a huge effort to translate so we actually have a “coordination” team and then one

team per language. Each language team has different processes/policies depending on much

available manpower they have.

4.- Since you started to get involved in this project, did you increase your contributions

to libre software? (For example, translating more languages, doing other kind of contri-

butions to the project as bug reporting or programming code, or participating in other

libre software projects as translator...)

Yes, since 2002 I’ve been involved in lots of other projects inside KDE as a developer and

also outside like poppler, to point in which I did not have time to translate anymore and stopped

translating around 2008.

5.- Which are the benefits you perceive for contributing in libre software translations?

Any bad counterparts?

As said, I’m not a translator anymore, but there was benefit huge benefit in increased knowl-

edge of the target language (in my case Catalan) when i was.

6.- Which are your future plans?

Conquer the world! Sorry. I should have not said that. I don’t really make plans, I just go

along.

7.- Anything else you may say?

I encourage anyone to try to translate to their native tongue. It is a really gratifying experi-

ence and you will become much more proficient in it. And of course in KDE we are welcome

to new translators so pay us a visit!

5http://techbase.kde.org/Localization/Tools/Pology

http://l10n.kde.org
http://techbase.kde.org/Localization/Tools/Pology

92 APPENDIX B. INTERVIEWS TO TRANSLATORS

B.4 Javier Taravilla, debian-l10n-es team

1.- Please introduce yourself and explain how and when did you start with libre software

translations.

My name is Javier Taravilla, and started my translations in Free Software projects in Debian,

driven by the community or business practices of free software, necessary to complete the “Free

Software Master” of Libresoft.

2.- Which tools are available/recommended in the project to help translators? Which

ones do you use? (For example, there is a Pootle server but you usually download the PO

file and translate it offline).

In Debian l10n team, I translated the web. So, the tools that I needed and used, were simpler

than used people to translate .po files or deb-conf templates. The web sites I visited and used

me for my work were:

• The robot coordinating translations: l10nbot@debian-es.org

• The interface translation statistics: http://www.debian.org/devel/website/

stats/es.html

• Group’s mailing list: debian-l10n-spanish

To translate I worked off-line and used gedit. But there are tools for translating strings

like “gtranslator” of GNOME, “KBabel” or “Lokalize” of KDE, which people from the list of

Debian used.

3.- Is there a translation team in the project? Which are the revision processes? Do you

focus on revision or on translating the untranslated strings?

Yes there is a team of volunteers who translated, reviewed and uploaded to the repositories

the translations approved.

And for the translation and revision in Debian, using a key system for items such as [ITT],

[RFR], [ITR], [LCFC] or [DONE], corresponding to different phases in which a translation is

from when you start up that is uploaded to the CVS.

1. So when you decide to translate a PO file, debconf template or WML file, you have to

send an email to the list, with the label [ITT] equivalent to “Intent To Translate”, marking

l10nbot@debian-es.org
http://www.debian.org/devel/website/stats/es.html
http://www.debian.org/devel/website/stats/es.html

B.4. JAVIER TARAVILLA, DEBIAN-L10N-ES TEAM 93

that a file has been booked by a translator to update. That is, if you send an email with

the subject “[ITT] wml://devel-manuals.wml” means that you will translate the WML file

“devel-manuals”.

2. Then a few hours or days later when you have the translation, send an email with the sub-

ject [RFR], that means “Request For Review” which states that the translator has done his

work with the file. In the mail you send the attachment, so that other translators can review

and provide input. Normally, leave this file for 7 days, before moving to the next state. So

would you send “[RFR] wml://devel-manuals.wml”, with the translated file attachment.

(a) Other translators or yourself, can use the tag [ITR] “Intent To Review” to indicate

interest to broaden the review time of a file. This is so that a file does not go to the

next phase when the interest of time, size, or interest of the people on the list, the

review can not be done in the usual deadlines.

3. “Last Chance For Comments” [LCFC] is the key which indicates that the translation is

complete and the changes or contributions have been incorporated. So, that the file is

ready to be sent to the person who upload it to CVS. It is advisable to leave it for another

3 days in this state and if no further input, advise for members with permission to include

in the repository.

4. After all you send an email with the subject starting with [DONE] to note that the work

is completed and implemented, or that the translation is abandoned whatever reason.

Importantly, all these items and changes will be reflected automatically in the robot transla-

tion: http://www.debian-es.org/cgi-bin/l10n.cgi?

And all this is well detailed in: http://www.debian.org/international/spanish/

robot

Finally, I focused mainly on the translation of WML files, which are the ones that translates

the web. From time to time, or when requested by a translator, I also conducted reviews of wml

and PO files.

4.- Since you started to get involved in this project, did you increase your contributions

to libre software? (For example, translating more languages, doing other kind of contri-

http://www.debian-es.org/cgi-bin/l10n.cgi?
http://www.debian.org/international/spanish/robot
http://www.debian.org/international/spanish/robot

94 APPENDIX B. INTERVIEWS TO TRANSLATORS

butions to the project as bug reporting or programming code, or participating in other

libre software projects as translator...)

No, as a “contributor”, I have not participated in more free software projects. I promote it

among friends and acquaintances, or at work, and I defend and use, but I have not participated

in more projects, more than send some bug report.

5.- Which are the benefits you perceive for contributing in libre software translations?

Any bad counterparts?

The main benefit was the experience of actually participating in a community and knowl-

edge of other translators. The only counterpart might be the time, but it is not well understood,

because it was an investment in learning.

6.- Which are your future plans?

Back to actively participate in the list.

7.- Anything else you may say?

I encourage anyone interested in contributing and creating or knows he can not do as a code

developer, to participate in a community of translation.

Appendix C

Contributing to translations: a personal

experience

C.1 Introduction

In this appendix I explain my experience about contributing translations to Spanish of several

libre software projects. I list them in chronological order, covering a total of several years,

different phases of involvement, different tools used and also different levels of ’performance’,

depending on each time acquired skills to act as part of a libre software community. I hope the

reader will find this story interesting, specially if he or she is considering to get involved in any

free software community as translator, for the first time.

C.2 PHPScheduleIt and Drupal 5

I was in charge of selecting and developing a web-based room reservation system, in order to

handle my School’s computer labs timetable. I found that the free software PHPScheduleIt1,

which consisted in a set of PHP scripts acting on a MySQL database, and it was as of version

1.2.8, was suitable with small adaptations.

In that time I knew that it was possible to modify the software by accessing the source code,

and we needed to ’tweak’ the system so the name for different things was different than the

original one (for example use ’lab’ instead of ’resource’) and fix some typos. I just find the file

1http://www.php.brickhost.com/

95

http://www.php.brickhost.com/

96 APPENDIX C. CONTRIBUTING TO TRANSLATIONS: A PERSONAL EXPERIENCE

I needed to modify by inspecting the folder structure of the PHP scripts of PHPScheduleit. I

opened the required file (es.help.php, in a folder called lang) with a text editor and made

my changes to the translation strings for Spanish, saved the file and the work was finished.

This was not exactly a translation work, but for example I fixed some typos in the translation

file and it would be nice to have contributed back to the community that fixes. But in that

time I did not know how to use control version systems, or submit a patch. I could have been

subscribed to the main mailing list and send the file as attachment, but in that moment I did

not know that the projects accepted easily external contributions without further involvement.

We deployed the system with other adaptations to the code, but as the original project evolved,

we did not upgrade to the new versions, because migrating our ’adaptations’ required too much

development and maintenance effort.

In the same times, I completed the translation of Scheduler module for Drupal 5, since the

Spanish translation file was not completed. In this case the file was an es.po file but for me it

made no different than former one: it was a text file so I use a text editor to open and modify

it. I imported the new translation into my own Drupal site, but did not contributed back my

translations to the community.

What did I learn?

• Thanks to the free software licenses and free access to the source code, if a program does

not include a translation to your language or if it is not complete you can complete the

translation yourself.

• If you contribute your changes upstream, you benefit from further updates with less main-

tenance effort required, and the community also receives your improvements, so probably

more people will contribute too and enrich the project.

• However, in order to contribute your translations or patches, you need to know how the

project works, who is in charge of i18n/l10n, and coordinate with other people, a task that

involves time for learning and interacting with the community.

C.3. DRUPAL 7: CONTRIBUTING TRANSLATIONS EASILY 97

C.3 Drupal 7: contributing translations easily

Next time I deployed a Drupal site the stable version was Drupal 7. The deployed site was

my School’s website about libre software. That work was part of the Practicum of my M.Sc.

on Libre Software, so I already knew that it was important to engage with the community of

the software projects that you use or deploy in order to stay tunned about updates and also

participate or contribute your improvements. On the other side, Drupal 7 includes a completely

new localization platform, allowing to contribute translations in some different ways. I joined

the Spanish team by clicking “Join” in the Spanish team group under the website http://

localize.drupal.org, and used the web interface of that website to select the modules

that I wanted to translate and complete some pending translations. In addition to this, I installed

the localization modules in my Drupal site so I get a web interface for translating the strings

that are pending from the modules that I have installed for my site. It is a very comfortable way

of translating, since you already get your changes be integrated in your local site, and with just

clicking a button (“Update translations”) the strings that you translated are sent to the Drupal

localization site (they will wait in the moderation queue to be approved), and you also download

automatically the new approved translations that other people contributed to the system. With

this both system I got approved 187 translations for Drupal2.

What did I learn?

• Having a web platform to ease the translation is really a great improvement in order to

lower barriers to new contributors.

• The Drupal system combines the needs of the end user to easily tweak the system and

have their translations integrated in their production sites immediately (without waiting

for approval and integration with upstream) and contribute your improvements to the

whole community, also in an easy way.

• However, moderation queue is the bottleneck of this system. A single English string may

have multiple suggestions sent from translation modules in different Drupal sites, whose

administrators have good intentions but did not read the rules, conventions and glossaries

2http://localize.drupal.org/user/166874

http://localize.drupal.org
http://localize.drupal.org
http://localize.drupal.org/user/166874

98 APPENDIX C. CONTRIBUTING TO TRANSLATIONS: A PERSONAL EXPERIENCE

for their language team in Drupal.

C.4 Pleft

In 2011 the M.Sc. on libre software students decided to use a web-based appointment planner in

order to altogether decide a suitable date and time for a non-academic meeting called ’MSWL

and Beers’3. The initial suggested tool was privative software so I tried to find a free software

alternative, and I found Pleft4 which was developed by two students from Amsterdam.

The tool was available in several languages, but not in Spanish. For MSWL students and

teachers it was not a problem, since all of us know English, but I liked the software and thought

that I could recommend it to other people or use it to arrange meetings with other friends that

don’t know English, so it could be a nice thing to have it in Spanish. The web based system is

very visual and has few text strings presented to the user so the translation could be done in a

very short time.

The documentation in the Pleft website was explaining that I needed to join Transifex web

platform in order to contribute translations to the software. I created a Transifex account and

joined the Pleft team, requested the Spanish language using the Transifex platform. The Tran-

sifex platform includes the possibility to send and receive messages to the projects maintainers

and receive email notifications when a message has arrived to your Transifex inbox. I received

a message welcoming me to the Pleft team and and approving the Spanish team. It was not an

automatic message, it was written by one of the Pleft developers, so I felt really welcomed and

go to translate the application to Spanish. I asked small questions about the translation (format

of dates) by the Transifex platform, and always got a quick response. When the translation was

finished I asked if there was a Pleft test site where I could see and review my translations “in

their context”. Pleft developers provided an URL for a test site so I reviewed my own work and

corrected and improved some strings. The Pleft development team uploaded the translations to

the production site some days later, and I was happy for having Pleft in Spanish with little effort

involved, and in a relatively short time.

Some days later, the Pleft admins asked me to translate some text for the promotion of the

3http://docencia.etsit.urjc.es/moodle/mod/forum/discuss.php?d=12867
4http://www.pleft.com

 http://docencia.etsit.urjc.es/moodle/mod/forum/discuss.php?d=12867
http://www.pleft.com

C.4. PLEFT 99

tool in several websites. I didn’t use any tool to translate that texts, since they were plain texts,

and not part of the software.

I was happy that I could translate a complete web based application without need of down-

loading the source code, use a SCM or have to know how to send a patch, or other “development

skills”, thanks to Transifex.

Some months later, I visited again the Pleft website and it was changed in two ways: a new

version was released, and the Spanish translation was gone. I read the Pleft blog and learned

that the development was moved from Google Code (a software forge) to GitHub (a different

software forge). I was not subscribed to the Pleft development mailing list (I thought it was not

necessary for me, since Transifex platform was managing all the communication needed for

translators) so I didn’t get the news about changing the forge. I went to GitHub, browsed the

new version source code, and saw that the localization files were three, while in Transifex there

were only two files, and their names and contents were different. So it looked clear that the

new version had a different architecture and the administrators had not updated the Transifex

project.

There were two problems to solve. One of them was to translate the new version of the

project to Spanish. The other one was to update the connection between the project and the

Transifex platform, if the Pleft team was still using it to manage translations.

For the first problem, in that time I already knew how to use git and GitHub, so I forked the

project to my GitHub account, cloned it to local, updated and reviewed the Spanish translation

files. This time I used Poedit, because I wanted to try that program, and with it it was very

easy to unset the “fuzzy” property to the machine-translated strings. I committed my changes to

my local repository and pushed them to my GitHub account. Then I asked for a “pull request”

to the original project. Since the “pull request” opens an issue in the issue tracker system, I

commented about the outdated translation files in Transifex and asked if they were willing to

keep using Transifex or not.

I received a quick answer, the Pleft admins were not aware of the problem with Transifex,

and they did not know why it happened. I read the Transifex documentation and concluded that

they (or somebody with privileges) had to update the URL to the source code repository, which

probably was still pointing to Google code, and the project was not there anymore. I updated

the issue with this suggestion and got an answer that as soon as the Pleft administration are

100APPENDIX C. CONTRIBUTING TO TRANSLATIONS: A PERSONAL EXPERIENCE

available the issue was going to be fixed (both updating the translations and handle the problem

with Transifex)5.

What did I learn?

• Although you don’t participate in the project as a developer, it is useful to be subscribed

to the main mailing list or project forum, in order to get updates about the roadmap or

changes that may affect the translations.

• If there is somebody in charge of internationalization, he or she could filter that infor-

mation and coordinate with translators, so the translators don’t need to receive all the

information and events related to the project which maybe are not of their interest.

• Localize an application is more than translate the text strings presented to the user. Web-

pages with help, user manuals or marketing, advertisements are also needed to be trans-

lated.

C.5 F-Droid

The F-Droid Repository6 is an easily-installable catalog of FOSS (free, open source software)

applications for the Android platform. The server contains the details of multiple versions of

each application, and the Android client makes it easy to browse, install them onto your device,

and keep track of updates. I began to use this the F-Droid Android client in my smartphone and

liked very much the project. But I saw that the Spanish translation was not completed (some

messages were showed in English). In addition to this, the information of the Android applica-

tions listed in the repository was in English too. This was an important handicap to spread the

word about F-Droid in my family and friend environments, since they use smartphones but they

don’t know English, and on the other side, the Google Play Store (the application repository

that is installed by default in the Android smartphones) is completely translated to Spanish, and

most of its applications too7

5https://github.com/sander/pleft/pull/46
6http://fdroid.org
7Many of this Google Play Store application descriptions are machine translation with a poor quality, but a

Spanish speaking person is at least able to figure out what each application does.

https://github.com/sander/pleft/pull/46
http://fdroid.org

C.5. F-DROID 101

I went to F-Droid website and looked for how to contribute with translations. They used a

web-based translation platform called Pootle. I already knew Transifex so I thought it was more

or less the same.

I created an account in the F-Droid Pootle server and joined the Spanish team, but I could

not see the files that needed translation. Pootle has no built-in message system and the F-Droid

project uses forums as communication channels, so I opened a thread in the development forum

to ask about how to translate the pending strings 8. The F-Droid administrator quickly answered

my question updating the Pootle server so I could go and translate the pending strings. I also

asked about the correct place to coordinate between translators in order to contact the previous

translator to Spanish, and the F-Droid project leader created a forum for translation-specific

issues9. I also asked about translating the application descriptions to Spanish, which it seemed

not be possible in that moment, and got an answer explaining that the internationalization of

that information was under development. I tried to contact with the Spanish previous translator

in order to generate a more neutral-Spanish translation for F-Droid. He agreed with me so I

updated some strings in the Pootle server, that will be shipped in the next update of the F-Droid

client.

What did I learn?

• As with previous experiences, quick response of the project manager or person in charge

for internationalization was key to get me involved in the project as translator.

• Having a web platform for translations is not enough. It is important to keep it up to

date and ensure a communication channel between translators (specially when the project

grows) and with the rest of the developers.

• When the program is developed without taking into account all the possible components

to be translated (that is, define the internationalization objects), later it is more compli-

cated to carry out this task.

8http://f-droid.org/forums/topic/contribute-to-translations-in-pootle/
9http://f-droid.org/forums/topic/how-to-coordinate-between-translators/

 http://f-droid.org/forums/topic/contribute-to-translations-in-pootle/
 http://f-droid.org/forums/topic/how-to-coordinate-between-translators/

102APPENDIX C. CONTRIBUTING TO TRANSLATIONS: A PERSONAL EXPERIENCE

C.6 Android applications

Since I was an F-Droid user and had a free software repository at my hand, I decided to con-

tribute to Android free software community translating in my free time some applications that I

was already using in my smartphone.

C.6.1 Trolly and E-numbers

I am user of these two Android applications, and both of them are free software. I cloned the

repositories and created the Spanish strings.xml files and translated the applications with

a text editor. I was not sure about how to send a patch or a merge request to the original reposi-

tories (they were hosted in Google Code and BitBucket forges, which they don’t have the “Pull

request” easy system as GitHub). So I opened an issue for each of them, attaching the translated

files10. Unfortunately, it seems that both applications are abandoned so I didn’t get answer for

my requests. How to proceed in this case? I can build my own binary with the Spanish transla-

tion and use myself and distribute it directly to my friends. I can fork the project and maintain

that fork which includes a Spanish translation. I can try to contact the project leaders in order

to know if they allow me to inherit the project and manage it from now on. I am not sure about

willing to get involved further than as a translation to these applications, so I still did not make

a decision about what to do.

C.6.2 Speech Trainer

I am using this application too, and found it very useful in order to train my public talks or

improve my English pronunciation. The application was not in Spanish and it was hosted in

GitHub. The first time that I made the Spanish translation I was not sure about how GitHub

works so I decided to download the English template, modify it with a text editor so I got

an Spanish localization file, and open an issue in the GitHub Speech Trainer project attaching

the file. The project manager quickly updated the program and released a new version to the

Android Market to let me review my work. I downloaded the new version and tried, it was

working well. I asked about translating the information of the Android Market and we did it

10https://bitbucket.org/uaraven/enumbers/issue/3/ for E-Numbers and http://code.

google.com/p/trolly/issues/detail?id=19 for Trolly

https://bitbucket.org/uaraven/enumbers/issue/3/
http://code.google.com/p/trolly/issues/detail?id=19
http://code.google.com/p/trolly/issues/detail?id=19

C.7. FUTURE PLANS 103

inside the issue tracker, since that information was plain text and the developer had to include

it “by hand” into the system.

I asked about translating the “Help” and “About” HTML files that were also part of the

application. That part was not internationalized but the Speech Trainer developer said that if I

provide a help es.html and an about es.html he could find the way to integrate them

in the program.

Some time passed and I learned how to use GitHub, so I forked the application, clone it to

local, copy the help.html and about.html files and renamed them to help es.html

and about es.html, translated the text with a text editor, and saved my work. I committed

my changes to my local repository, pushed them to my GitHub fork, and issued a pull request

to the original repository. I updated the former issue in order to explain what did I did and link

both issues, and my changes were accepted soon.

The complete story about the Spanish translation of Speech Trainer can be read here: https:

//github.com/wrr/speech_trainer/issues/1.

What did I learn?

• GitHub makes easy to contribute to a project.

• Thanks to free software licenses, if a project is abandoned you still can make modifica-

tions or contributions, and give life to it again.

• As I said before, translating the strings presented to the user sometimes is not enough,

there is additional information to be internationalized and localized.

C.7 Future plans

• Keep on maintaining the Spanish translations for the new versions of each program that I

already translated.

• Take a decision about what to do with the abandoned Android applications.

• Contribute Spanish translations to other free software Android applications that I am us-

ing.

https://github.com/wrr/speech_trainer/issues/1
https://github.com/wrr/speech_trainer/issues/1

104APPENDIX C. CONTRIBUTING TO TRANSLATIONS: A PERSONAL EXPERIENCE

• Get more involved in the F-Droid project, contributing to the internationalization of the

application descriptions.

• Contribute, if needed, to the Debian Administration Handbook translation (as I need to

read the book anyway for improving my system administration skills at job).

• Join the FSF Spanish translation team and contribute translations to the web pages, if

needed.

• Keep on blogging and studying about translations in free software.

• Suggestions are welcome!

Appendix D

Mining for localization in libre software

projects

In this Appendix, I will explain how the SCM logs of libre software project could be inspected

or mined in order to get information about the software. The libre software Tux Paint will be

used as example; a similar process may be applied to other programs.

D.1 General overview of the process

The source code history of certain libre software projects should be studied to try to find infor-

mation about internationalization and localization tasks. The process followed may have several

steps:

1. Clone the source code repository to local, to get the history of changes (SCM log).

2. Convert that log in a SQL database, using CVSanaly1 tool [Car12].

3. Query the database to get the information needed, and present it in a comprehensive way.

D.1.1 Metrics to extract

In a summarized analysis to learn how localization is done, for each project, we could query its

database to obtain the following metrics:
1CVSAnalY cvsanaly is a tool that extracts information out of source code repository logs and stores it into a

database.

105

106 APPENDIX D. MINING FOR LOCALIZATION IN LIBRE SOFTWARE PROJECTS

• Total number of files.

• Total number of i18n files.

• Total number of l10n files.

• Total number of languages.

• Total number of contributors.

• For each contributor, total number of commits (changes), number of commits involving

at least one localization file.

We need to take into account the type of SCM. For example Tux Paint uses CVS and that

CMS stores only the identification of the contribution “actually” performing the commit for

uploading changes to the repository. Other projects may use for example Git where information

about both the committer and the real author may be stored.

D.2 SQL queries

Based on the table structure of a CVSAnalY database [Car12], and knowing that Tux Paint uses

gettext and PO catalogs, we can write the following SQL queries to obtain our metrics:

Total number of files:

select count(*) from files;

Total number of i18n files.

select * from files where file_name like ’%.pot’;

Total number of l10n files.

select * from files where file_name like ’%.po’;

Total number of languages.

select distinct(file_name) from files

where file_name like ’%.po’;

D.3. RESULTS 107

Total number of contributors.

select count(*) from people;

For each contributor, total number of commits (changes):

select people.id, name, count(*) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

group by scmlog.committer_id order by total_commits desc;

Contributor and number of commits involving at least one internationalization file:

select people.id, name, count(*) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

and scmlog.id in

(Select distinct commit_id from actions_file_names

where file_id in

(select id from files where file_name like ’%.pot’))

group by scmlog.committer_id order by total_commits desc;

Contributor and number of commits involving at least one localization file:

select people.id, name, count(*) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

and scmlog.id in

(Select distinct commit_id from actions_file_names

where file_id in

(select id from files where file_name like ’%.po’))

group by scmlog.committer_id order by total_commits desc;

D.3 Results

The CVS source code management system stores a separate log for each module of the project

(each main folder of the tree structure). In Tux Paint we have several modules. In table D.1 there

108 APPENDIX D. MINING FOR LOCALIZATION IN LIBRE SOFTWARE PROJECTS

is a summary of the file structure for each module.

Tux Paint Stamps Website Config Music Magic Drawtext

Files 1817 12502 2727 182 43 506

i18n files 1 1 1 1 0 0

l10n files 158 77 85 46 0 0

Languages 103 70 85 44 0 0

Committers 32 19 11 15 1 2

Table D.1: Some metrics in Tux Paint modules

We can see that for each module there is only one internationalization file. This simple

structure probably is one of the key factors for Tux Paint to be translated to so many languages,

since new translators can easily learn what to do: touch only 4 files to get the whole application

and the website translated to one language.

For the analysis of contributors and their commits on internationalization and localization

files, we have mined only the main Tux Paint module (results in Table D.3; for the sake of

brevity only results of contributors that changed localization files are presented). For a complete

analysis of the whole project, it would be necessary to mine each module and merge the results

in only one table which takes into account all the contributors.

We can see that 21 out of 32 committers did changes on localization files. Most of the

changes have been performed by Bill Kendrick, the leader of the project, who is the person in

charge of receiving the translation files from people with no access to the repository.

We can find that access privileges have been given to 9 contributors (greendeath, ahven, ter-

jeb, cos, giasher, najmi zabidi , smarquespt , xandruarmesto and friedelwolff) that did changes

only on localization files; this may be a sign of the importance of localization on Tux Paint, and

the natural division of work that localization brings to any software project.

It would be interesting for example to see the evolution of commits in time for each contrib-

utor, to see if the last committers that came to the system are only contributing translations or

getting involved in development too. The evolution of commits of Bill Kendrick may also give

us hints about if he is still “centralizing” the management of the system, or if he is delegating

in other committers.

We could also compare metrics between the languages that are “managed” under the Official

D.3. RESULTS 109

Committer Name Id Total Commits Commits on i18n Commits on l10n

1 wkendrick 8928 60 4422

2 huftis 1265 13 944

3 vindaci 87 12

5 greendeath 4 4

6 songhuang 61 18

7 srtxg 139 129

12 jfriedl 4 3

13 kartik m 18 15

14 ahven 4 4

15 terjeb 1 1

16 el paso 8 5

18 dolphin6k 65 5

19 secretlondon 780 7 585

20 perepujal 356 1 121

24 jchion 17 15

25 cos 3 3

27 giasher 1 1

28 najmi zabidi 6 6

29 smarquespt 2 2

31 xandruarmesto 6 6

32 friedelwolff 1 1

Table D.2: Commits from translators in Tux Paint (main module)

Pootle Website, and the languages that are translated “manually”, to see if there are significant

differences among them (for example, more people involved in its management, or updated

more frequently).

110 APPENDIX D. MINING FOR LOCALIZATION IN LIBRE SOFTWARE PROJECTS

Bibliography

[Ast12] Albert Astals. Presentation about kde. mswl case studies ii. Web-

site, 2012. http://docencia.etsit.urjc.es/moodle/mod/

resource/view.php?id=7056.

[Car12] GSyC LibreSoft (Universidad Rey Juan Carlos). Data analysis: Cvs-

analy. Website, 2012. http://projects.libresoft.es/projects/

cvsanaly.

[CCfTTC12] South Africa; Department of Arts CTexT (Centre for Text Technology, North-

West University) and South Africa Culture. Atshumato project. Website, 2012.

http://autshumato.sourceforge.net/.

[Com12] Creative Commons. About creative commons. Website, 2012. http://

creativecommons.org/about.

[Con10] World Wide Web Consortium. Questions and answers about internation-

alization. Website, 2010. http://www.w3.org/International/

questions/qa-i18n.en.

[Cor11] Gonçalo Cordeiro. Open source software in translator’s workbench.

Tradumàtica: tecnologies de la traducció, 0(9), 2011.

[CS08] M. Cánovas and R. Samson. Herramientas libres para la traducción en entornos

MS Windows. pages 33 – 55, 2008.

[CS12] Marcos Canovas and Richard Samson. Open source software in translator train-

ing. Tradumàtica: tecnologies de la traducció, 0(9), 2012.

111

http://docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=7056
http://docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=7056
http://projects.libresoft.es/projects/cvsanaly
http://projects.libresoft.es/projects/cvsanaly
http://autshumato.sourceforge.net/
http://creativecommons.org/about
http://creativecommons.org/about
http://www.w3.org/International/questions/qa-i18n.en
http://www.w3.org/International/questions/qa-i18n.en

112 BIBLIOGRAPHY

[Def08] Freedom Defined. Freedom defined. Website, 2008. http://www.

freedomdefined.org.

[End11] Rikki Endsley. Transifex: The gsoc project that translated itself in an

international business. Linux.com Website, 2011. https://www.

linux.com/news/enterprise/biz-enterprise/495159-

transifex-the-gsoc-project-that-translated-itself-

in-an-international-business.

[FA11] Sı́lvia Flórez and Amparo Alcina. Free translation software catalog.

Tradumàtica: tecnologies de la traducció, 0(9), 2011.

[For10] Gil Forcada. Gnome localization update for q1 2012. Website, 2010. https:

//live.gnome.org/TranslationProject/Survey.

[Foua] Free Software Foundation. Gnu general public license. Website. http://

www.gnu.org/licenses/gpl.html.

[Foub] Free Software Foundation. Gnu general public license, version 2. Web-

site. http://www.gnu.org/licenses/old-licenses/gpl-2.0.

html.

[Fouc] Free Software Foundation. Gnu project. Website. http://www.gnu.org.

[Fou08] O. Dı́az Fouces. Ferramentas livres para traduzir com GNU/Linux e Mac OS X.

pages 57 – 73, 2008.

[Fou10] Free Software Foundation. GNU Gettext. http://www.gnu.org/

software/gettext/, 1998-2010. [Online; Updated: 2010/06/06; Accessed

2012/01/25].

[Fou12a] Django Software Foundation. Django documentation. internationalization and

localization. Website, 2012. https://docs.djangoproject.com/en/

1.4/topics/i18n/.

[Fou12b] The Free Software Foundation. The free software definition. gnu project. Web,

2012.

http://www.freedomdefined.org
http://www.freedomdefined.org
https://www.linux.com/news/enterprise/biz-enterprise/495159-transifex-the-gsoc-project-that-translated-itself-in-an-international-business
https://www.linux.com/news/enterprise/biz-enterprise/495159-transifex-the-gsoc-project-that-translated-itself-in-an-international-business
https://www.linux.com/news/enterprise/biz-enterprise/495159-transifex-the-gsoc-project-that-translated-itself-in-an-international-business
https://www.linux.com/news/enterprise/biz-enterprise/495159-transifex-the-gsoc-project-that-translated-itself-in-an-international-business
https://live.gnome.org/TranslationProject/Survey
https://live.gnome.org/TranslationProject/Survey
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org
http://www.gnu.org/software/gettext/
http://www.gnu.org/software/gettext/
https://docs.djangoproject.com/en/1.4/topics/i18n/
https://docs.djangoproject.com/en/1.4/topics/i18n/

BIBLIOGRAPHY 113

[ftAoSISO08] Organization for the Advancement of Structured Information Standards (OA-

SIS). Xliff version 1.2. oasis standard. Website, 2008. http://docs.

oasis-open.org/xliff/xliff-core/xliff-core.html.

[ftAoSISO09] Organization for the Advancement of Structured Information Standards (OA-

SIS). Open architecture for xml authoring and localization reference model

(oaxal) tc wiki. Website, 2009. https://wiki.oasis-open.org/

oaxal/.

[Her11] Raphael Hertzog. People behind debian: Christian perrier, translation coordi-

nator. Website, 2011. http://raphaelhertzog.com/2011/03/03/

people-behind-debian-christian-perrier-translation-

coordinator/.

[Ini12] Open Source Initiative. About the open source initiative. Website, 2012. http:

//opensource.org/about.

[KDE12] KDE. Localization. Website, 2012. http://techbase.kde.org/

Localization.

[Kov12] Petr Kovar. Gnome localization update for q1 2012. Website,

2012. http://blogs.gnome.org/pmkovar/2012/05/22/gnome-

localization-update-for-q1-2012/.

[Mat08] M. Mata. Formatos libres en traducción y localización. pages 75 – 122, 2008.

[MW11] Lucı́a Morado and Friedel Wolff. Bringing industry standards to open source

localisers: a case study of virtaal. Tradumàtica: tecnologies de la traducció,

0(9), 2011.

[new10] Gábor Hojtsy Drupal Newsletters Maintainer news. Drupal 7 coming, project,

cvs and translation changes. Website, 2010. http://drupal.org/node/

991166.

[Par11] Cristina Gomis Parada. Free software localization within translation companies.

Tradumàtica: tecnologies de la traducció, 0(9), 2011.

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
https://wiki.oasis-open.org/oaxal/
https://wiki.oasis-open.org/oaxal/
http://raphaelhertzog.com/2011/03/03/people-behind-debian-christian-perrier-translation-coordinator/
http://raphaelhertzog.com/2011/03/03/people-behind-debian-christian-perrier-translation-coordinator/
http://raphaelhertzog.com/2011/03/03/people-behind-debian-christian-perrier-translation-coordinator/
http://opensource.org/about
http://opensource.org/about
http://techbase.kde.org/Localization
http://techbase.kde.org/Localization
http://blogs.gnome.org/pmkovar/2012/05/22/gnome-localization-update-for-q1-2012/
http://blogs.gnome.org/pmkovar/2012/05/22/gnome-localization-update-for-q1-2012/
http://drupal.org/node/991166
http://drupal.org/node/991166

114 BIBLIOGRAPHY

[Per12a] Christian Perrier. Bubulle’s blog. Website, 2012. http://www.perrier.

eu.org/weblog.

[Per12b] Christian Perrier. Debian-installer language support, statistics and transla-

tors. Website, 2012. http://d-i.alioth.debian.org/doc/i18n/

languages.html.

[RR12] Laura Arjona Reina and Gregorio Robles. Mining for localization in android. In

MSR 2012: Proceedings of the 2012 workshop on Mining software repositories,

2012.

[Tra12] Transifex. Transifex help pages. Website, 2012. http://help.

transifex.com/index.html.

http://www.perrier.eu.org/weblog
http://www.perrier.eu.org/weblog
http://d-i.alioth.debian.org/doc/i18n/languages.html
http://d-i.alioth.debian.org/doc/i18n/languages.html
http://help.transifex.com/index.html
http://help.transifex.com/index.html

	Introduction
	Terminology
	Internationalization, localization, translation
	Free, libre, open source software
	Free culture, freedom definition, creative commons

	About this document
	Structure of the document
	Scope
	Methodology

	Goals and objectives
	Goals
	Objectives
	Explain the phases of localization process
	Analyze the benefits and counterparts
	Provide case studies of libre software projects and tools
	Present personal experiences

	Localization in libre software projects
	Localization workflow
	Prepare: Defining objects to be localized
	Some examples

	Internationalize: Setting up the i18n platform
	Used and accepted file formats for localization
	Collaborative models and tools to approach l10n tasks
	Some examples

	Localize: Setting up the l10n platform
	Web platforms for supporting translation
	Some examples

	Maintenance and Quality Assurance
	Some examples

	Who are the translators?

	Benefits
	Benefits for the libre software community
	Extra features with not much extra workload
	Sustainability: Increase market share and demand for services
	Ease the integration of localization made by others
	Localization as a way of recruiting
	Standardization in localization, for recruiting professional translators

	Business opportunities
	Translation companies completing the community work
	Services on libre software translation tools
	Localization tools as free software: a new market to explore

	Social benefits
	Reduce the digital gap
	Develop and promote minority languages
	Localization results as free culture works

	Problems and challenges
	Internationalization problems
	Division of work and coordination problems
	Crowdsourcing and quality of translations

	Case Studies
	Internationalization tools
	Gettext

	Translation tools
	Text editor extensions
	Poedit
	Virtaal
	Gtranslator
	Lokalize
	Plugins or built-in localization tools

	Web frameworks for crowdsourcing translation
	Pootle
	Weblate
	Transifex
	Launchpad Translations (Rosetta)
	Drupal localization system

	Translation projects and teams
	GNOME
	KDE
	Debian
	Tux Paint
	Pleft
	The power of open: The Debian Administration Handbook

	Conclusions
	Evaluation
	Lessons learned
	Key aspects of localization in libre software projects
	What did I learn
	Knowledge and skills acquired in the M.Sc. studies that helped me on this work

	Future work
	More on localization results as free culture works
	Apply libre software techniques to cultural works localization
	Mining for localization in libre software projects

	Libre software tools for localization
	Interviews to translators
	Miguel Vidal, OpenBSD Spanish Documentation
	Pedro García, Support Mozilla Messaging (SuMoMo)
	Albert Astals, KDE
	Javier Taravilla, debian-l10n-es team

	Contributing to translations: a personal experience
	Introduction
	PHPScheduleIt and Drupal 5
	Drupal 7: contributing translations easily
	Pleft
	F-Droid
	Android applications
	Trolly and E-numbers
	Speech Trainer

	Future plans

	Mining for localization in libre software projects
	General overview of the process
	Metrics to extract

	SQL queries
	Results

	Bibliography

