Mining for Localization in Android

Laura Arjona Reina, Gregorio Robles
Universidad Rey Juan Carlos
Madrid, Spain
larjona99 @ gmail.com, grex@gsyc.urjc.es

Abstract—Localization, and in particular translation, is a key
aspect of modern end-user software applications. Open source
systems have traditionally taken advantage of distributed and
volunteer collaboration to carry localization tasks. In this
paper, we will analyze the Android source code repository
to know how localization and translation is managed: who
participates in this kind of tasks, if the translation workflows,
participants and processes follow the same patterns as the rest
of the development, and if the Android project takes benefit
from external contributions. Our results show that Android
should ease the localization tasks to benefit from external
contributions. Steps towards obtaining a specialized team as
found in many other free software projects are also encouraged.

Keywords-Android; translation; localization; i18n; 110n; min-
ing software repositories;

(©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

This is a preprint version of the paper to be found in: “2012 9th IEEE
Working Conference on Mining Software Repositories (MSR)”

Digital Object Identifier: 10.1109/MSR.2012.6224272

I. INTRODUCTION

Internationalization (i18n in its short form) is the process of designing
software so that it can be adapted to different languages, regions or
target environments. Localization (110n in its short form) is the process of
adapting the software to a specific locale or target environment, for example
translating texts to a specific language. Both are key aspects for software
dissemination. Opening a project for volunteer contributions in localization
tasks dramatically increases the number of languages to which a certain
piece of software can be successfully translated, since non-technical users
can also participate thanks to i18n efforts to separate the locale-specific
strings from the rest of the source code.

In this work we will analyze Android SCM logs to extract and show
information related to the internationalization and localization of this mobile
operating system. We will analyze the changes to the source code of
Android to see how 110n is being carried: who performs most of the
localization work, how many people contribute to localization and if they
are different people from the main developers or contributors. We will
compare some metrics on the whole project, the internationalization files,
and the localization files, to see if the behavior of the translation teams and
processes are similar (or not) to the general software development team
and processes.

The structure of this paper is as follows: next, we briefly describe how
110n is done in Android. Then, we present the methodology we have used in
our study. Results are then shown in section IV and discussed in section V,
including threats to validity and reproducibility issues. Following, some
related efforts are presented. Finally, conclusions are drawn.

II. LOCALIZATION IN ANDROID

Following the best practices for localizing Android applications de-
scribed in the Localization document®, developers have to create a set of
default resources and alternatives that will depend on the locale. When the
user runs the application, the Android system will select which resources
to load, based on the device’s locale at runtime.

Android developers are encouraged to introduce the text strings in
English in a structured format in a file called strings.xml and located in the
/res/values/ directory (that every Android module or project should have).
Translators can take the text strings and localize them to their locale.
As a result, another strings.xml file is generated that will be stored in
the /res/values-XX directory, where XX stands for the ISO_639-1 code
representation of names of languages (fr for French, de for German, etc.).
The Hello, LION tutorial® provides an example of how to build a simple
localized application that uses locale-specific resources.

III. DATA AND METHODOLOGY

The data used for our analysis is the one provided by the MSR 2012
Challenge organizers, that includes changes in the source code management
system (the git log) and a database dump of the issue tracker system. As
the data is offered in XML format, we had to implement some scripts to
transform it to SQL, so that they could be stored, massaged and queried
using a MySQL database. The analysis is performed by a set of SQL
queries. The R statistical package has been used in our analysis as well.

As Android uses git, we have the possibility to differentiate between
committers and original authors; this is specially important in the case of
110n, as not all translators have write access (many of them may not know
how git works).

Our methodology is based on the fact that the filenames to i18n
(res/values/strings.xml) and to 110n (res/values-xx/strings.xml) files are
known, so we can filter out commits to the source code management system
that affect those files and analyze them and the developers that handle them.
It should be noted that in addition to language 110n, there are other types
of 110n such as images or screen resolution (for instance, for different
types of devices) which have to be filtered. The section about “Providing
Alternative Resources™ in the Android Developers Guide describes the
different configuration qualifier names and codes, and the precedence order.
The regular expression that matches language localization files (in MySQL
syntax) is the following:

file_name like ’%res/values-mcc%—__/strings.xml’
or file_name

like ’Sres/values-mcc%$—__-%/strings.xml’
or file_name like ’S%res/values—__/strings.xml’
or file_name like ’Sres/values-__-%/strings.xml’

The Linux kernel development, base of Android and also using git
for managing the source code, may bias the perception of the retrieved
information, since the data about its development is “merged” with the
data of Android. In addition to this, the localization of the kernel does not
follow the Android methodology of using resources and string.xml
files. For this reason, the internationalization and localization data will be

Thttp://developer.android.com/guide/topics/resources/localization.html

Zhttp://developer.android.com/resources/tutorials/localization/index.html

3http://developer.android.com/guide/topics/resources/
providing-resources.html

Table I
GENERAL STATISTICS ABOUT 118N AND L10N IN ANDROID (PROJS
STANDS FOR PROJECTS AND CTTERS STANDS FOR COMMITTERS)

1.0

[[Projs | Files | Commits | Authors | Ctters |
Total 275 | 567,357 1,771,660 12,688 1,658
Not-merge 275 - 1,603,229 12,628 1,636
Not-kernel 266 | 508,273 65,241 1,984 1,103
i18n 21 168 1,881 219 165
110n 16 927 2,405 62 57
Rest 242 | 507,178 63,200 1,980 1,632
Table 1T

EFFORT STATISTICS OF ANDROID DEVELOPERS: TOTAL DEVELOPERS,
NOT-KERNEL DEVELOPERS, 118N TEAM AND L10N TEAMS

[Effort estimation | Total | Not-kernel | i18n [T110n |
Files / author 44.72 256.19 0.77 | 14.95
Files / committer 342.19 460.81 1.02 | 16.26
Commits / author 139.63 32.88 8.59 | 38.79
Commits / committer | 1068.55 59.15 11.40 | 42.19
Authors / committer 7.65 1.80 1.33 1.09

compared with both the total data and the “not kernel data” (total data
discarding the Android kernel subprojects).

IV. RESULTS

In total, Android is localized to 40 languages, but not all of them to
the same extent. Two languages are localized in less than 10 modules, 20
languages have 11 to 20 modules translated, 10 languages have 21 to 30
modules translated and 8 languages have over 30 modules translated. The
most localized language is Spanish, with 57 modules.

In Table I we can find some general statistics about the Android project.
In the git log data source, each commit is related to a specific project or
repository, affects a certain number of files (or zero files if it is a “merge
commit”), and it is performed by a committer, in some cases different than
the original author.

We present total numbers, numbers about commits affecting files (not
“merge commits”), and numbers affecting files not belonging to the kernel
repositories. Below them, you can find “i18n related” and “110n related”
numbers (commits changing “internationalization files” or “localization
files”), and in the “Rest” row we count the projects, files, commits and
people that are not performing actions to i18n files or 110n files (but change
other files, again in subprojects different than the kernel). We can observe
that while 0.2% of all files correspond to i18n and 110n files, the amount
of activity on them (commits) is very high with 6.5% of all commits.

Table II gives some insight on the number of authors/committers per files
and authors depending on the type of file. For i18n and 110n the number of
developers changing the sames files is much higher than for source code.

It is common to find that the effort in free software projects is highly
unequally distributed [1]. We have calculated the Lorentz curve and Gini
coefficient [2] for the distribution of commits among author, for each group
of developers (Figure 1).

We find that the distribution for all the teams (even discarding the
kernel developers) is very unequal with Gini values above 0.8. In the
case of the i18n team we find a more balanced distribution, and the
localization team gives the most unequal distribution. We have to take
into account that both i18n and 110n are small teams. We could expect
that localization teams were where we find a more balanced distribution
of work, because of the “natural” distribution of the different languages,
but this unequal distribution suggests that some authors are contributing to
several languages and concentrating the translation work. This makes us
think that in Android we have maybe professional translators, being at the
time the only translators with permissions to commit.

For the sake of brevity, we are not including the Lorenz curve for
committers, but we can say that the distribution of effort of non-kernel

Total development team - G = 0.88
Not-kernel developers - G = 0.87 i
-~ Internationalization team - G = 0.68 {
0.8 Localization teams - G = 0.91 i
—— Perfect equality -G =0 7l
v
06 B
= /
=1
0.4 —
02 - Bt
0.0 s T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Lorenz Curves in Android project (authors)

committers is more balanced, and the distribution of effort in i18n and
110n teams is similar to the authors teams.

But who are the translators? Do they work only on translation files or do
we find that there are no “110n teams”, but general developers who perform
the localization as additional contributions to the rest of the development? If
we build a top-10 ranking of developers by different type of contributions,
we obtain Table III for the most active developers on the global project,
Table V for the most active developers acting on i18n files, and Table VI
for the most active developers on 110n files*.

Table III

ANDROID DEVELOPERS: TOP-TEN AUTHORS BY NUMBER OF COMMITS

[Name [Commits_]
Ingo Molnar 17,272
Takashi Iwai 16,557
Bartlomiej Zolnierkiewicz 15,171
Paul Mundt 13,882
Ralf Baechle 12,596
David S. Miller 11,590
Greg Kroah-Hartman 11,388
Thomas Gleixner 11,200
Patrick McHardy 9,509
Al Viro 9,398

All of the top ten contributors to Android also belong to the top-20 most
active contributors to the Linux Kernel, according to December 2010 report
from the Linux Foundation®. In Table IV we show the top-ten authors per
commits ranking, not considering this time kernel related modules®.

If we look at the Table IV we find that some of the top modifiers of
internationalization files are part of the top contributors in Android. This
is what we expected, since i18n are also the files containing the strings
presented to the user (prominent part of the interface of any system).

If we look at the 110n authors (see Table VI), we find that many files
correspond to the initial upload of Android files to the repository. And
again some of the top contributors to this kind of files are also present in
the global ranking (see Table IV).

The data about authors emails are significant to know an author’s
affiliation to a company. For the sake of brevity, we have eliminated the

4For this analysis, to avoid the gate-keeper effect, as not all the contrib-
utors have access to the repositories [3], we have looked at authors, not
committers

Shttps://www.linuxfoundation.org/sites/main/files/If_linux_kernel_
development_2010.pdf

%The author called “The Android Open Source Project” refers to the
initial upload of files to the Android repositories.

Table IV
ANDROID SPECIFIC TEAMS (NOT KERNEL): TOP-TEN AUTHORS BY
NUMBER OF COMMITS

[Name [Commits_]
Marcel Holtmann 3,469
Shawn O. Pearce 3,055
Johan Hedberg 1,654
The Android Open Source Project 1,618
Xavier Ducrohet 1,186
Eric Fischer 1,156
Jean-Baptiste Queru 1,107
Matthias Clasen 1,020
Dianne Hackborn 945
Elliott Hughes 914

Table V
ANDROID 118N TEAM: TOP-TEN AUTHORS BY NUMBER OF COMMITS

[Name [Commits]
The Android Open Source Project 277
Eric Fischer 86
Dianne Hackborn 84
Hung-ying Tyan 59
Roy West 56
Jean-Baptiste Queru 42
Amith Yamasani 38
Bjorn Bringert 34
Dmitri Plotnikov 34
Owen Lin 31

Table VI
ANDROID L10N TEAMS: TOP-TEN AUTHORS BY NUMBER COMMITS

[Name [Commits |
Eric Fischer 1039
Eric Fischer (blank e-mail) 576
The Android Open Source Project 455
Kenny Root 239
Dianne Hackborn 84
Eric Fischer (nobody @android.com) 71
Hung-ying Tyan 59
Jean-Baptiste Queru 57
Roy West 56
Amith Yamasani 40

author’s emails from the tables, but we discovered that all the top-ten
authors modifying i118n or 110n files have a Google Inc. email address.
In fact, they are almost the same group of people that perform i18n and
110n: Bjorn Bringert, Dmitri Plotnikov and Owen Lin are the number 11,
12 and 13 in the list of most active contributors in 110n files. Kenny Root,
present in localization ranking, but not in our internationalization ranking,
is in the 31st position in the i18n list of contributors.

V. DISCUSSION

In this paper we have observed that the activity on i18n and 110n files
is different. But, contrary to our expectations, it seems that some of the
key contributors to Android 110n are also key contributors to the rest of
the project. From our point of view, the Android project lacks a specialized
group dedicated only to 110n tasks, and benefiting from volunteer work as
other free software projects have (see for instance [3]). Those contributing
to 110n have to follow the same procedure as when contributing with code,
making it difficult for non-technical people to join the effort of translating

Android into other languages. Other free software projects use specific web
platforms to ease this task and lower the burden to participate.

A. Threats to Validity

‘We have considered that all the folders with name matching the regular
string explained in section III correspond to language localization files.
However, there are some exceptions: when resources depending on Android
version are required, the used codes are —vn, being ‘n’ a one-digit
number corresponding the Android version number. This version code has
precedence so it matches our discrimination condition.

Using a specific query to the data used in this study, we found that
the number of files, commits and authors in this case of ‘“versioning
localization” is very low, not biasing the total numbers, but if the source
data changes and metrics about “versioning localization” turn out to be
significant, a new “condition string” for language localization should be
designed.

B. Reproducibility of the Study

According to the reproducibility classification criteria proposed in [4],
the attributes of this study are given in Table VII. Detailed information can
be obtained at http://gsyc.urjc.es/~grex/msr2012challenge.

Table VII
REPRODUCIBILITY ASSESSMENT OF THIS STUDY

Element Assessment gondensed
ssessment
Data source usable U
Retrieval methodology not usable N
Raw dataset usable U
Extraction methodology usable U
likely available in future +
flexible *
Study parameters Usable U
Processed dataset Usable U
Analysis methodology Usable U
likely available in future +
flexible *
Results dataset Usable U
flexible *

VI. RELATED WORK

Despite of the importance of i118n and 110n for the general use of end-
user software, little research has been done on this topic. From the software
engineering perspective, Robles et al. analyze KDE desktop environment
looking for patterns in different kind of contributions by the type of file
(localization files, multimedia, documentation, source code, and others) [3].
From the field of economics, Giuri et al. analyze the division of labor in free
software projects and how it affects project survival and performance [5].

VII. CONCLUSION AND FURTHER WORK

In this paper we have mined the Android SCM for i18n and 110n,
especially focusing to activity on il18n and 110n files and to author
specialization. We have seen that i18n and 110n files show a different
behavior than source code files and that in Android there is no specialized
110n team as in other projects.

It would be interesting to perform an analysis which filters the commits
by subject (not by the files affected), and searches for the names of the
different languages to which Android is translated, in order to compare
its results with the ones obtained here. In that analysis, we could use the
issue tracking system data (mining it by using the subject of the issue too).
Another approach could be to try to match the SCM authors and committers
with the issue reporters and fixers; but it is not clear if this is possible, since
an e-mail account is required for registration in the issue tracker, but this
information is obfuscated in the given data set as e-mails are provided in
truncated form.

ACKNOWLEDGMENTS

The work of Gregorio Robles has been funded in part by the European
Commission under project ALERT (FP7-IST-25809) and by the Spanish
Government under project SobreSale (TIN2011-28110).

REFERENCES

[1] K. Crowston and J. Howison, “The social structure of free and
open source software development,” First Monday, vol. 10,
no. 2, February 2005,
http://www.firstmonday.dk/issues/issue10_2/crowston/.

[2] C. Gini, On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission, 1936.

(3]

(4]

(53]

G. Robles, J. M. Gonzalez-Barahona, and J. J. M. Guervos,
“Beyond source code: The importance of other artifacts in
software development (a case study),” Journal of Systems and
Software, vol. 79, no. 9, pp. 1233-1248, 2006.

J. M. Gonzalez-Barahona and G. Robles, “On the reproducibil-
ity of empirical software engineering studies based on data
retrieved from development repositories,” Empirical Software
Engineering, vol. 17, no. 1-2, pp. 75-89, 2012.

P. Giuri, M. Ploner, F. Rullani, and S. Torrisi, “Skills, division
of labor and performance in collective inventions: Evidence
from open source software,” International Journal of Industrial
Organization, vol. 28, no. 1, pp. 54-68, January 2010.

