

 	 [image: PIC] 	 	UNIVERSIDAD
	REY JUAN CARLOS
	

	

Máster Universitario en Software Libre

Curso Académico 2011/2012

Proyecto Fin de Máster

Translations in Libre Software

Autor: Laura Arjona Reina

Tutor: Dr. Gregorio Robles

 Agradecimientos

A Gregorio Robles y el equipo de Libresoft en la Universidad Rey Juan Carlos,

por sus consejos, tutoría y acompañamiento en este trabajo

y la enriquecedora experiencia que ha supuesto estudiar este Máster.

A mi familia, por su apoyo y paciencia.

Dedicatoria

Para mi sobrino Darío

(C) 2012 Laura Arjona Reina. Some rights reserved.

This document is distributed under the Creative Commons Attribution-ShareAlike 3.0 license,
available in http://creativecommons.org/licenses/by-sa/3.0/

Source files for this document are available at
http://gitorious.org/mswl-larjona-docs

Contents

 1 Introduction

 1.1 Terminology

 1.1.1 Internationalization, localization, translation

 1.1.2 Free, libre, open source software

 1.1.3 Free culture, freedom definition, creative commons

 1.2 About this document

 1.2.1 Structure of the document

 1.2.2 Scope

 1.2.3 Methodology

 2 Goals and objectives

 2.1 Goals

 2.2 Objectives

 2.2.1 Explain the phases of localization process

 2.2.2 Analyze the benefits and counterparts

 2.2.3 Provide case studies of libre software projects and tools

 2.2.4 Present personal experiences

 3 Localization in libre software projects

 3.1 Localization workflow

 3.2 Prepare: Defining objects to be localized

 3.2.1 Some examples

 3.3 Internationalize: Setting up the i18n platform

 3.3.1 Used and accepted file formats for localization

 3.3.2 Collaborative models and tools to approach l10n tasks

 3.3.3 Some examples

 3.4 Localize: Setting up the l10n platform

 3.4.1 Web platforms for supporting translation

 3.4.2 Some examples

 3.5 Maintenance and Quality Assurance

 3.5.1 Some examples

 3.6 Who are the translators?

 4 Benefits

 4.1 Benefits for the libre software community

 4.1.1 Extra features with not much extra workload

 4.1.2 Sustainability: Increase market share and demand for services

 4.1.3 Ease the integration of localization made by others

 4.1.4 Localization as a way of recruiting

 4.1.5 Standardization in localization, for recruiting professional translators

 4.2 Business opportunities

 4.2.1 Translation companies completing the community work

 4.2.2 Services on libre software translation tools

 4.2.3 Localization tools as free software: a new market to explore

 4.3 Social benefits

 4.3.1 Reduce the digital gap

 4.3.2 Develop and promote minority languages

 4.3.3 Localization results as free culture works

 5 Problems and challenges

 5.1 Internationalization problems

 5.2 Division of work and coordination problems

 5.3 Crowdsourcing and quality of translations

 6 Case Studies

 6.1 Internationalization tools

 6.1.1 Gettext

 6.2 Translation tools

 6.2.1 Text editor extensions

 6.2.2 Poedit

 6.2.3 Virtaal

 6.2.4 Gtranslator

 6.2.5 Lokalize

 6.2.6 Plugins or built-in localization tools

 6.3 Web frameworks for crowdsourcing translation

 6.3.1 Pootle

 6.3.2 Weblate

 6.3.3 Transifex

 6.3.4 Launchpad Translations (Rosetta)

 6.3.5 Drupal localization system

 6.4 Translation projects and teams

 6.4.1 GNOME

 6.4.2 KDE

 6.4.3 Debian

 6.4.4 Tux Paint

 6.4.5 Pleft

 6.4.6 The power of open: The Debian Administration Handbook

 7 Conclusions

 7.1 Evaluation

 7.2 Lessons learned

 7.2.1 Key aspects of localization in libre software projects

 7.2.2 What did I learn

 7.2.3 Knowledge and skills acquired in the M.Sc. studies that
helped me on this work

 7.3 Future work

 7.3.1 More on localization results as free culture works

 7.3.2 Apply libre software techniques to cultural works localization

 7.3.3 Mining for localization in libre software projects

 A Libre software tools for localization

 B Interviews to translators

 B.1 Miguel Vidal, OpenBSD Spanish Documentation

 B.2 Pedro García, Support Mozilla Messaging (SuMoMo)

 B.3 Albert Astals, KDE

 B.4 Javier Taravilla, debian-l10n-es team

 C Contributing to translations: a personal experience

 C.1 Introduction

 C.2 PHPScheduleIt and Drupal 5

 C.3 Drupal 7: contributing translations easily

 C.4 Pleft

 C.5 F-Droid

 C.6 Android applications

 C.6.1 Trolly and E-numbers

 C.6.2 Speech Trainer

 C.7 Future plans

 D Mining for localization in libre software projects

 D.1 General overview of the process

 D.1.1 Metrics to extract

 D.2 SQL queries

 D.3 Results

 Bibliography

List of Figures
1.1 Software Licenses and Localization
3.1 Document
Localization Life-cycle
3.2 A gettext catalog opened with a text editor, and
with Poedit
3.3 An XLIFF sample file opened with a text editor and with
Virtaal
6.1 Files handled by GNU gettext and tools acting on them
6.2 Comparison
between Poedit, Gtranslator, and Lokalize (by Ohloh.net)
6.3 Overview of a
Pootle server (1)
6.4 Overview of a Pootle server (2)
6.5 The localization of
the Pootle software
6.6 Translation of PHPMyAdmin documentation to Greek,
using Weblate
6.7 Pricing plans in Transifex
6.8 Launchpad suggestions
from other projects
6.9 Launchpad translation statistics
6.10 Overview
of Pleft translations in Transifex
6.11 Information about Translations
in the Debian Administration Handbook’s website

List of Tables
3.1 Internationalization file formats
6.1 Summary of Drupal
localization
6.2 Summary of GNOME localization
6.3 Summary of KDE
localization
6.4 Summary of Debian localization
6.5 Summary of Tux Paint
localization
6.6 Summary of Pleft localization
A.1 List of the localization tools
analyzed in this work
A.2 List of other localization tools
D.1 Some metrics in
Tux Paint modules
D.2 Commits from translators in Tux Paint (main module)

Summary
 Libre software licenses allow to modify the program and distribute the derived work, so
users of libre software may translate it to their desired language or dialect.
In this report we will analyze this legal freedom and its technical viability, provided by accessing the
source code and the use of different internationalization guides, programs and platforms that libre
software developers have created to help software translation.

 These tools, particularly web translation frameworks, together with manual and style guides,
promote the involvement of ‘non-technical users’ in the development project, allow to carry multiple
translation projects to many languages at the same time, and promise to enhance the quality of
translations. The main goal of this work is to provide a detailed view of the translation process in libre
software, showing a variety of cases of projects that carry out localization tasks, the different tools that
may support that work, and the people that are involved in translations in libre software
projects.

Resumen
 Las licencias de software libre permiten modificar el programa y distribuir la obra
derivada, por lo que los usuarios de software libre pueden traducirlo al idoma o dialecto que
deseen.
En este trabajo analizaremos esta libertad legal y su viabilidad técnica, propiciada mediante el
acceso al código fuente y el uso de diferentes guías de inernacionalización, programas y
plataformas, que los desarrolladores de software libre han creado para ayudar a la traducción del
software.

 Estas herramientas, en particular los entornos de traducción web, junto con los manuales y guías
de estilo, promueven la implicación de ‘usuarios no técnicos’ en el desarrollo del proyecto,
permitiendo llevar a cabo múltiples proyectos de traducción a muchos idiomas a la vez, y prometiendo
mejorar la calidad de las traducciones.

 El principal objetivo de este trabajo es proporcionar una visión detallada del proceso de traducción
en software libre, mostrando una variedad de casos de proyectos que llevan a cabo tareas de
localización, las diferentes herramientas que apoyan ese trabajo, y las personas que están implicadas
en la traducción de proyectos de software libre.

Chapter 1
Introduction

 1.1 Terminology

1.1.1 Internationalization, localization, translation

Software internationalization is the process to prepare a program to be adapted to different languages,
regional or cultural differences without engineering changes (source code remains the same) [Con10].
This process involves tasks as separating the text strings that are showed to the user in
the different interfaces so they can be translated, supporting the different character sets,
using certain libraries to manage date, currency or weights and measures entry verification
according to the different formats, and many other details. Internationalization is sometimes
referred to by the numeronym i18n (as in: “i”, followed by eighteen more letters, and then
“n”).

 Localization is the process of adapting the software to a particular target market (a
locale) [Con10]. This process involves tasks as translating the text files to the desired language or
dialect, providing translated documentation with images (screen shots) in the target language, adapting
graphics and colors, adopting local currencies, using proper forms for dates, measures and many other
details. Localization is sometimes referred to by the numeronym l10n (as in: “l”, followed by ten more
letters, and then “n”).

 As we can see, translation, that is, adaptation of information in text form to a target locale, is part
of the localization process, but not all of it.

1.1.2 Free, libre, open source software

The usage and distribution terms of any software can be read in its license.

 Every software product need a written license, because software works are covered by
copyright law, and this law states that all the rights (the right to use, to distribute, to modify, to

link that software with others, etc) belong to the author or copyright holder. This usually
apply not only to the code of the program, but also to its end-user documentation (manuals,
guides).

 Developers of proprietary software use licenses to state what the user can do with the program
(usually, few things: for example, to use it, maybe distribute it without changes, maybe distribute it but
free-of-charge). Normally they write in “negative-language”: they state all the things that the user
cannot do (for example “you can use this program only for educational purposes, professional use is
not allowed”).

 On the other side, developers of free software state in their licenses the rights or freedoms that
provide to the end-user.

 The concept of free software was conceived in 1983 by Richard Stallman, when he started the
GNU Project to develop GNU: a complete free software system, upward-compatible with Unix, and
bringing back the cooperative spirit that prevailed in the computing community in earlier days: to make
cooperation possible once again by removing the obstacles imposed by the owners of proprietary
software [Fouc].

 The Free Software Foundation was created to advocate for free software ideals as outlined in the
Free Software Definition [Fou12b], which states that for a program to be said that it is free (as in
freedom) software, its license should include four basic freedoms:

 	Freedom to use the program, for any purpose

 	Freedom to study and adapt the programs (modify)

 	Freedom to distribute the program to others

 	Freedom to distribute to others the modified versions of the program

 It is possible to provide the four freedoms and state other clauses or restrictions in the license not
affecting those freedoms; and the software will still be free software. One example can be a the license
with a clause stating that if you distribute the program, modified or not, it must been distributed within

the same license terms. This is what is called “copyleft”, and the most known copyleft licenses are the
General Public License version 2 [Foub], and the General Public License version 3 (GPLv3) [Foua],
which are widely used in the free software communities. Other free software licenses that are
more “permissive” and not considered copyleft are the Apache v2.0 license, or the BSD
license.

 In 1998, the Open Source Initiative (OSI) was founded, coining the Open Source Definition, with
a different writing but similar legal effects than the definition of free software, while focusing its
philosophy in how these technologies, licenses, and models of development can provide economic and
strategic advantages [Ini12].

 In practice there are small differences between “free software” and “open source software”.
However the term “open source” has been historically rejected by part of the community, claiming that
it misses the meaning of freedom. On the other side, other part of the community, mainly
the business supporters behind the Open Source Initiative, were reluctant to use the term
“free” because of the confusion between the meaning of “freedom” and the meaning of “no
cost”.

 In order to avoid the confusion of the term “free”, but keeping the meaning of freedom,
“liberation”, the term libre software has gained popularity in the last years (and with it, the acronym
FLOSS: Free, Libre, Open Source Software). In this document, “libre software” will be used to
refer to any code that conforms either to the definition of “free software” (according to
the Free Software Foundation) or “open source software” (according to the Open Source
Initiative).

Software licenses and localization

The “limitations” of privative licenses to end-users of the software creates a situation in which, without
permission from the copyright holder, it is illegal to translate the software to other languages different
than the provided in the software release. It is also forbidden to make internationalization
improvements to the software, if certain parts of it need to be modified in order to be suitable for
localization. In addition to this, while there are cases of “privative software” translated to other
languages by users (for example, the translation of Twitter, which is managed in the website

http://translate.twttr.com and open to external contributions), the common case (of
privative software) is that software development company or organization controls the translation
process, whether providing themselves the translations, or subcontracting them to a professional
translation company.

 The free software licenses create a totally different scenario for software localization. As any
modification of the software is allowed, end-users may translate the software to their desired language
or dialect, without need of permission from the copyright holder. This legal viability is usually viewed
as an advantage of libre software versus proprietary alternatives, both by users and by developers,
so, although it is not a requirement and we can find free software created under a closed
development model, it is common that both communities collaborate in the translation processes:
for developers, is a way to increase the dissemination of the program, attract new users
and new possible contributors to improve the project. For users, is a way to guarantee the
availability of the software in their language, despite of the interests of the developer group or
company.

 In figure 1.1 we can find a diagram summarizing this two different scenarios.

[image: PIC]

Figure 1.1: Software Licenses and Localization

1.1.3 Free culture, freedom definition, creative commons

As explained above, software is considered a cultural work, and after the success of the legal hacking
to copyright laws to bring freedom to the software users, a free culture movement was born, which
pretends to extend that freedoms to the “users” or “receivers” of other kind of cultural work (such as
literature, films, multimedia contents…). A wider definition of free, libre cultural works has been
designed with the name of Freedom Defined [Def08] and on the other side, a set of licenses known
as Creative Commons [Com12] have been written, in order to show to the authors or
copyright holders their possibilities for retaining certain rights while bringing more freedom to
their audience (for redistributing the work, modify it, translate it, or make business with
it).

 Although Creative Commons is a set of 6 different licenses (a three-layer design of the attribution
(CC-BY), non-commercial (CC-NC), non-derivative (CC-ND) and share-alike (CC-SA)
components that can be combined) plus one more, CC-0, equivalent to public domain, only
three of them (CC-BY, CC-BY-SA and CC-0 for public domain) are considered “free”
according to the Freedom Defined definition (or the philosophy behind the Free Software
Movement represented on the Free Software Foundation). However, we cannot avoid the
great advance that they represent (if we compare them with the restrictions of the “standard
copyright” application) and their role in spreading the word of openness and free access to
culture.

 Being the free software licenses best adequate to guarantee the freedoms to the user of computer
programs, Freedom Defined and Creative Commons licenses may also be used (and in fact, they are
used) within the scope of software projects, licensing with them for related work as documentation,
artwork, multimedia components or derived knowledge from translation work as translation memories
or glossaries.

1.2 About this document

1.2.1 Structure of the document

In this chapter I am introducing the main concepts needed to understand the framework of localization
in libre software projects. In chapter 2 the goals of this work are presented. Chapter 3 is devoted to
analyze how localization and translation is performed in libre software projects, giving some brief
examples of each phase and the tools and tasks involved. Chapter 4 shows the benefits that localization
brings for the libre software projects, its stakeholders and the society in general, and chapter 5
explains some of the problems and challenges to face when “going international”. In addition to
the already presented examples in former chapters, detailed case studies are analyzed in
chapter 6. Finally, conclusions are drawn in chapter 7, including lessons learned and future
work.

 Four Appendix are provided: Appendix A is a list of libre software tools to help localization (the
ones mentioned in former chapters, and others listed for further reference). A set of interviews to
translators is provided in Appendix B, and my own experience participating in the localization of
several projects is included in Appendix C. Finally, Appendix D explain the possibilities of getting
information about how localization is managed by mining the software repositories, using the project
Tux Paint as example.

1.2.2 Scope

Internationalization and localization are complex processes involving many different aspects. This
document will focus on explaining some tools, frameworks and workflows followed by different libre
software projects, without entering in technical details as how the used tools are developed, their
complete feature list, particularities of target locales as text orientation or character sets…With respect
of localization, we will focus on translation (that is, localization of texts). The intention is not
thoroughly compare the different approaches for internationalization and localization, but to show the
wide diversity available (and not only available, but susceptible of improvements because of
their nature of being libre software) for carrying out internationalization and localization
tasks.

1.2.3 Methodology

I have gathered the information presented in this work from different sources. On one side, we have the
public available sources as websites of the projects, documentation, mailing lists for translators, and
related literature showed in the Bibliography. On the other side, I have contacted personally with some
free software translators, and also provided my own experience contributing to the translation to
Spanish of several libre software projects.

Chapter 2
Goals and objectives

 2.1 Goals

The main goal of this work is to understand how translation is carried out in libre software projects, the
different tools available for each need of the process, and why localization and translation is a key
aspect for the sustainability of the libre software projects.

 Another goal is to present personal stories related with the participation in the localization of libre
software projects, so any person thinking about getting involved in this kind of task may get a clear
image of what to expect and ensure a successful and gratifying experience.

2.2 Objectives

In order to achieve these goals I have set the following objectives:

 	Explain the different phases of localization process.

 	Analyze the benefits and counterparts of using open and collaborative development
 models for translation and localization.

 	Provide case studies of libre software projects and tools

 	Present the experience of certain individuals involved in localization tasks.

2.2.1 Explain the phases of localization process

 	Define each phase of localization, describing tasks, tools and people involved.

 	Present new trends, if any, for each phase.

 	Provide several examples of the different approaches.

2.2.2 Analyze the benefits and counterparts

 	Analyze the benefits for the libre software community.

 	Analyze the benefits for other stakeholders and society in general.

 	Explore the possible vulnerabilities and threats to take into account.

2.2.3 Provide case studies of libre software projects and tools

 	Gather in-depth information about how localization is carried out for several libre
 software projects.

 	Show traditional, widely used tools for localization

 	Introduce new tools that are becoming trend in localization processes

2.2.4 Present personal experiences

 	Gather personal experiences of people involved in translation teams of libre software
 projects.

 	Present the information in a comprehensive way, thinking on people that are not involved
 (yet) in libre software projects.

Chapter 3
Localization in libre software projects

 3.1 Localization workflow

There is not a standard, accepted workflow for localization followed by all the libre software
communities, nor by the professional translation communities (the object of translation being software
or not).

 OASIS, the Organization for the Advancement of Structured Information Standards,
approved in December 2009 the Open Architecture for XML Authoring and Localization
(OAXAL), encouraging the development of an open Standards approach to XML Authoring and
Localization [ftAoSISO09].

 Among many other processes and proposals, OAXAL sets up a suitable translation workflow,
comprising the following steps:

 	Identification of the text to be localized

 	Segmentation of the text into sentences if required

 	Matching of the sentences with previous translated versions of the document if possible

 	Translation of the text

 	QA/Post-editing of the translated text

 	Merging/recreation of the original document in the target language

 Figure 3.1 reproduces this workflow.

[image: PIC]

Figure 3.1: Document Localization Life-cycle

 While OAXAL open specification is still to be widely accepted in the localization world and
business environments, it represents a comprehensive, efficient, and cost-effective model regarding the
authoring and translation aspects of XML publishing. The localization workflow may be applied in the
libre software communities in order to easily integrate the work of professional translators, the same
than other parts of developments are also getting professionalized.

 We can adapt the different phases of the localization life-cycle to the process of localizing a
software project so we can obtain the following workflow:

 	Prepare: Identification of the objects to be localized

 	Internationalize: Separate texts from source code, set up the accepted type of documents
 for translation.

 	Localize(1): Match the objects to be translated with previous translated versions of the
 project if possible

 	Localize(2): Translation of the pending strings

 	QA/Post-editing of the translated objects

 	Publish: Update the original project integrating the target language

 Although not all the libre software projects care well about all the process, we will see in the
following sections how each phase of the process can be carried out and some examples of successful
cases.

3.2 Prepare: Defining objects to be localized

A software project is not only the source code, there are many artifacts susceptible of translation
or localization. The first step of the localization workflow is to define the objects to be
localized:

 	Source code: hard-coded strings, comments, interface-related strings (this may come in
 .po files, .php, .ini, .xml files…)

 	Text files that “come” with the binary release: README, license, disclaimers, changelog,
 credits files.

 	Documentation: this can be available in text files, DOC, ODT, RTF, HTML files, Wiki
 pages, PDF…

 	Images. audio, video subtitles

 	Marketing tools: flyers, banners to put in websites for promotion

 	Other

 The people involved in this task is the whole community: users may suggest that the software needs
to be translated to a new language, or complain about incomplete translations, or translated text but not
screenshots for example. Internationalization team (i18n-team in advance) should receive that user
feedback and communicate it to the development team and localization teams, prioritize and
coordinate the steps involved in this task. The main tools used for defining the localizable
objects are the communication channels of the project: mailing lists, issue tracker, website
(where at least a brief list of the localizable objects is needed along with the help to possible
contributors). The results of this task is, as explained before, a detailed list of the objects to be
localized.

3.2.1 Some examples

The KDE desktop environment, in its localization
page1 ,
states that the localizable objects for this project are the Applications and the Documentation.
More information about KDE internationalization and localization process can be found in
section 6.4.2.

 The Debian community in its internationalization
page2
defines which kind of objects are localizable within their project:

 	Installation system (the Debian installer)

 	Debian documentation

 	Debian web pages

 	Debian wiki pages

 	Debian specific packages

Since Debian is a GNU/Linux distribution, which basically is a collection of an operating system, software
components and applications adapted to be used altogether in a specific hardware architecture, it
encourages people willing to translate other kind of objects to contribute their suggestions or
translations to the upstream projects. More information about Debian internationalization and
localization process can be found in section 6.4.3.

3.3 Internationalize: Setting up the i18n platform

A project’s internationalization team is a bridge between developers and translators.

 On the “developers” side, the internationalization team reviews all the artifacts susceptible of
localization and suggests accepted formats for all of them, and also creates or suggests coding
guidelines in order to ease the localization task. For example, if the project includes images, it is easier
to change the text included in the images if they are in a vector format as SVG, better than in a
“photographic format” as JPG.

 On the “translators” side, the internationalization team creates and/or manages the common
infrastructure used by all the localization teams: documentation for translators, communication
channels, coordination, translation server or platform, and development of specific tools.

 Internationalization team also decides about the timing of the translation process, according it with
the release schedule.

 In addition to i18n-team, other contributor roles in the project may be needed to carry out this task:
infrastructure team to set up the platform or mechanism to keep up to date internationalization files,
and developers, to discuss and accept the coding guidelines.

 The tools used in this task are the communication channels, tools as gettext to generate i18files
such as POT templates, scripts or robots to periodically run to generate the templates so they are up to
date all the time.

 The products derived from this task are the i18n files (such as POT templates for example), scripts,
documentation for developers and translators.

3.3.1 Used and accepted file formats for localization

There are a number of standards to be applied to the task of translation and localization, that determine
the use of certain file formats to ensure interoperability, that is, the ability to use different tools to do
the translation work.

 If we look at the complete process of localization in general (not only related to software
localization), considering the OAXAL framework [ftAoSISO09], there are certain standard file
formats used in localization, as tmx, tbx, and xliff.

 However, these standards are quite recent and the authors of libre software were worried about the
localization from the very beginning. So, much before the OAXAL framework was designed, other
kind of file formats became de facto standards as the “PO” (Portable Object) file format for software
translations.

 The GNU Project [Fouc] took the tool Gettext [Fou10], which first implementation is from Sun
Inc3
and used it to help the internationalization of the GNU project software. Gettext explores the source
code and extracts all the “printed” strings into a POT file.

 With time the use of PO files have become a de facto standard for libre software internationalization.
There are other file formats used to hold the translatable strings; one of them is the XLIFF (XML

Localization Interchange File Format), which version 1.2 was approved by OASIS in February
2008 [ftAoSISO08]. XLIFF consist in an XML specification to hold translatable strings along with
metadata. This format is very used in professional translation and not only in software
internationalization.

 Nowadays we can find multiple file formats for internationalization of software, documentation and
other elements in any libre software development project. For example, Android Operative System uses
“Android Resources” to make easy the localization of Android applications. More information can be found
in http://developer.android.com/guide/topics/resources/localization.html.

 In table 3.1 there is a summary of the characteristics of different internationalization
formats [Tra12].

 	
	
	

	 Name 	 File extension 	 Notes
	
	
	

	 Android Resources 	 .xml 	 XML based format. 3 types of entries:

	 	 	 string, string-array and plurals.

	
	
	

	 Apple strings files 	 .strings 	 UTF-16

	
	
	

	 Desktop files 	 .desktop 	 Configuration files describing how a program

	 	 	 appears in menu, etc. It is widely used by KDE and Gnome

	
	
	

	 Gettext based formats 	 .po, .pot 	 Widely used in libre software projects.

	 	 	 Many tools to convert to/from PO files

	
	
	

	 Java Properties 	 .properties 	 ISO-8859-1

	
	
	

	 Joomla! INI files 	 .ini 	 Joomla localization files
	
	
	

	 Maker Interchange Format 	 .mif 	 Markup language for Adobe’s FrameMaker documentation.

	
	
	

	 Mozilla DTD 	 .dtd 	 List of entities that need localization before used in XUL files.
	
	
	

	 PHP files 	 .php 	 3 types: PHP Array, Define and Alternative Array

	
	
	

	 Plain text 	 .txt 	 One text file for each translated language.

	
	
	

	 Property list files 	 .plist 	 XML based, used to store serialized objects,

	 	 	 in Mac OS X, iOS, NeXTSTEP, GNUstep.

	
	
	

	 Qt Linguist 	 .ts 	 XML based

	
	
	

	 Subtitle formats 	 .srt, .sub, .sbv 	 SubRip, SubViewer and Youtube captions

	
	
	

	 Wiki markup 	 .wiki 	 Syntax and keywords used by the MediaWiki software

	 	 	 and other Wiki packages

	
	
	

	 Windows installer projects 	 .wxl 	 XML based, used to build .msi installation files

	
	
	

	 Windows resource files 	 .resx 	 .NET and Windows Phone applications

	
	
	

	 HTML, XHTML 	 .html, .xhtml 	 An HTML parser may extract the text to translate.

	
	
	

	 XLIFF 	 .xlf, .xliff, .xml 	 XML Localization Interchange File Format,

	 	 	 XML-based, created to standardize localization.

	
	
	

	 YAML 	 .yml, .yaml 	 YAML translation dictionaries

	
	
	

	

 Table 3.1: Internationalization file formats

 3.3.2 Collaborative models and tools to approach l10n tasks

The concept of free software was born to retrieve the spirit of collaboration, so it is very common,
specially in the last years, to find libre software projects that build a collaborative web
infrastructure to carry out localization tasks. The advantages of crowdsourcing for the project
include [CS12]:

 	Lower user access barrier to localization, and receive the user experience that deals
 everyday with the software

 	Lower the costs of translation

 	Translation work and integration is fast

 	The process enhances user identification and involvement with the project

 	Peer review and editing of translation is built into the system

 It is task of the internationalization team to study and decide if the localization of the project is
going to be driven by a crowdtranslation platform or other kind of tools and mechanisms.

 In the first case, some projects decide to use one an external web based collaborative environment
for all the localization teams to be coordinated (for example, OpenStack project is discussing about
which platform to use: Pootle, Launchpad or Transifex, for handling the localization of the
documentation, and includes some comparative charts and assessment in their wiki page about

translations4).
The approach can be to use an external server (hosted outside the project) where the chosen platform is
running (this case will be discussed in next sections as does not require internationalization effort), or
to deploy an instance of that software using one of the community servers, in which case the
infrastructure team of the project, in coordination with the internationalization team, should care that
the server is up to date and running all the time, in order to offer the service to the localization
teams.

 On the other side, some projects decide to develop their own web-based infrastructure, which is
usually also released as free software, and depending on the focus of the platform (more oriented to the
project for which was created, or more standardized), may be used later for other projects
too.

3.3.3 Some examples

The Android Open Source Project includes a Localization
document5
explaining the process that Android developers should follow in order to
make their applications localizable. There is also available the Hello, L10N
tutorial6
providing an example of how to build a simple localized application that uses locale-specific
resources [RR12].

 The KDE internationalization build system7
basically consists in a script running in the KDE source code repository server, which extracts the
localizable strings in the KDE source code and generates the localization templates periodically. This
way developers only need to care about writing code with localization in mind, and localizers will
always find an update template with the last strings to translate as developers introduce changes in the
system.

 Many different and popular projects decide to host their translation in
an external service. For example Wordpress uses the official Pootle translation
server8 ,
and the FreedomBox Foundation and the Fedora community use
Transifex9
for the localization of their websites.

 About project-tailored web based localization platforms, we can find Damned
Lies10
which is the translation platform developed and used by the GNOME project, or the Drupal localization
website11
which is used in the Drupal CMS project.

3.4 Localize: Setting up the l10n platform

Generally there are independent teams for each language and they agree on using locale-specific
tools, formats, guidelines... Each localization team is responsible to translate, review, and
upload changes to the source code repository. The tools used vary from traditional tools as
Poedit, or plain text editors, to sophisticated web platforms that integrate translation and
revision processes, and sometimes even automatically committing the changes to the SCM
repository.

 The products result of this task may be localization files, translation guidelines, glossaries,
language-specific conventions…

3.4.1 Web platforms for supporting translation

As I explained before, in the last years a number of web based translation platforms have been
developed in order to get the advantages of internet based collaboration, automate certain tasks and
also lower barriers to external contributions (crowdtranslation).

 Despite of the internationalization team of the project recommending or not to use one of these web
platform, each localization team is usually free to use the tools that they want. For these reasons,
sometimes we find that some language teams decide to use a certain, local tool, and other
localizations of the same project are driven in a (usually external) web based platform for
translations.

 Sometimes this situation is found in early stages of the project, and once that several tools
are tried the internationalization team together with the different language teams decide if
recommending one of the available tools or keep the l10n teams to choose depending on their
circumstances.

3.4.2 Some examples

Poedit12 is
a cross-platform editor por .po files (gettext catalogs). It allows to configure the tool with
the information related to the translator (name and email) and the environment, and every
time a file is translated and saved, that information is included in the file. In figure 3.2
we can see a file opened for translation with a text editor, and the same file opened with
Poedit.

[image: PIC]

Figure 3.2: A gettext catalog opened with a text editor, and with Poedit

 Virtaal13
is a more modern translation tool, which allows working with XLIFF files [MW11]. In figure 3.3 we
can see an XLIFF sample file opened with a text editor and with Virtaal.

[image: PIC]

Figure 3.3: An XLIFF sample file opened with a text editor and with Virtaal

 Probably the older example of a web based translation platform is
Pootle14 , which is built on top
of the Translate Toolkit15 ,
a set of scripts and tools to help localizers carry out their tasks. Pootle allows online translation, work
assignment, gives statistics and includes some revision checks. Launchpad, which is a complete
software forge including a powerful web based translation system, was developed by Canonical to
handle the Ubuntu development, and initially released under a privative license, but later liberated
under the GNU Affero General Public License, version 3. Transifex is a newer platform which
enhances the translation memory support, and Weblate is the last one coming to the neighborhood,
developed by Michal Cihar (PHPmyAdmin project leader), and introducing a better integration with
the Git control version system.

 In section 6 several web based translation platforms are studied in-depth.

3.5 Maintenance and Quality Assurance

This is not the last step, but several tasks that affect the whole process, including the revision of
translations (in l10n teams, before committing the changes), bug submitting and tracking for
translation suggestions or problems, extending the number of different kind of objects to be
localizable, or targeting new languages.

 The people involved in this task is the whole software community: users, l10n teams, i18teams and
developers.

 The results of this task are not new files, but the improvement of the existing products, and the
update of the documentation and information related to i18n and l10n.

3.5.1 Some examples

The Translate Toolkit16
is a collection of useful programs for localization, and a powerful API for programmers of localization
tools. The Toolkit includes programs to help check, validate, merge and extract messages from
localizations. Among them we can find:

 	poconflicts - extract messages that have conflicting translation

 	pofilter - filter PO files to find common errors using a number of tests

 	pogrep - find strings in PO files

 Pology17
is a Python library and collection of command-line tools for in-depth processing of PO files. Some of

the prominent elements of Pology functionality include examination and in-place modification of
collections of PO files (the posieve command), and custom translation validation, by rules written by
users for particular languages and projects, and applied in various contexts. Pology distribution
contains internal validation rules for some languages and projects, and more can be contributed at any
time.

3.6 Who are the translators?

In previous sections I have briefly drawn the roles involved in each phase of the localization process:
users, localizers (translators), internationalization team, developers. But what kind of people decide to
join these internationalization and localization teams? Well, it depends on the project, but we can say
that although localization is a very specific task which involves specific workflows and tools, no
particular skills are required to work on it.

 It is very common that each localization team have their own mailing list or forum where they
communicate in the “target” language, so the access barrier for new participants is also
lower.

 In addition to this, localization is a low-risk task (few critical bugs arise from poor or wrong
localization) and it has high granularity: the minimum “translatable” unit is the sentence or sometimes
even a single word. All these particularities make localization an attractive start point for people
willing to get involved in a free software project.

 The motivations and benefits of caring about localization are multiple (see section 4) so we can
find translators from very different affiliation:

 	Developers: Whether reasons are globalization and migratory movements, or the collaborative
 nature of open development model, which is followed by many libre software projects,
 it is common to find people participating in the project who know more other languages.
 Therefore it is also common that the need/opportunity for localization “appears” in a
 natural way in early stages of development: with little additional effort and many times
 willingly, developers get involved so their project release is localized to their known

 languages18 .

 	Users (volunteers): They deal with the application each day so they know its interface
 and the contexts of each message. In many cases they don’t know how to work with the
 localization tools but being localization files text files, this is rarely a handicap in order to
 contribute translations19 .

 	Public administrations: they may be interested in promoting the usage of a certain
 software but they need it to be localized to the regional language. In other cases is a way
 to promote minority languages, providing software translated to that languages.

 	Professional translators (as individuals): for the professional or trainee translators,
 participating in a libre software community allows them to be in contact with cutting-edge
 trends in localization as crowdsourcing - crowdtranslation, use accessible Computer
 Assisted Translation applications with similar characteristics to the ones used in
 professional environments, practice with the different objects to be localized, and assume
 different roles in the translation workflow. They may contribute to free software projects
 as translation training or to improve their experience portfolio. They may be contracted
 by companies or public administrations willing a software to be translated to a certain
 language.

 	Companies: The software may be part of a complete system or solution developed or
 deployed by a company, and they want the whole system to be localized to the locale of
 their target market.

Chapter 4
Benefits

 4.1 Benefits for the libre software community

Using libre software licenses and an open development model to carry out localization task brings
many benefits for the libre software community.

4.1.1 Extra features with not much extra workload

Developers knowing other languages, specially if they work on the program interface, are able to
translate the software to their own language with little extra work. This approach enriches the software
project, as each language can be seen as a new feature of the product.

4.1.2 Sustainability: Increase market share and demand for services

Globalization of markets and development of information and communication technologies have
meant an increment in the needs of linguistic management for any far-reaching social or business
initiative. Having the software translated to many languages helps spreading its use so it is a very
powerful asset to gain market share and also increase sustainability of the business since there will be
more demand on services related to the software.

4.1.3 Ease the integration of localization made by others

The free software licenses allow the user to modify the program, mix parts of it with other software
and vice versa, and they also allow to redistribute that “derived works”. In some cases, this makes that
localization simply “happens”, sometimes even without the official (upstream) software developers
being notified. Deploying the infrastructure needed for localization in the original project
prevents this kind of “forks” integrating the external contributions and taking benefit of

them.

4.1.4 Localization as a way of recruiting

One of the competitive advantages of libre software is based in this open and collaborative
development model, which brings more human work to the project, at a relatively low cost
(maintenance of the collaborative infrastructure, and coordination of external contributors). Creating
and maintaining alive the users and contributors community is a fundamental aspect for many libre
software projects. Efforts towards improving project internationalization and create localization
helping infrastructures lower the access barrier for contributor candidates, and some of them will
become regular contributors in the localization teams and possibly in other areas of the
project.

4.1.5 Standardization in localization, for recruiting professional translators

The experience in the development and participation in localization tasks in libre software projects
opens new opportunities for professionals of language management. Marcos Cánovas and Richard
Samson have studied the mutual benefits of using libre software in translator training [CS12], both for
the trainees and for the libre software community.

 For the software community, it is logical to think that if a professional (or training) translator
decides to collaborate in the localization of a libre software project, she would choose the one that
allows her to maximize the benefits for her professional career. Therefore, efforts toward
standardization as using standard file formats or promoting workflows and tools similar to the ones in
professional translation may serve to attract these professional translators to the libre software
communities and this would increase the quality of software localization and as a consequence, the
quality and professionality of the project as a whole.

4.2 Business opportunities

Localization of libre software may open business opportunities for companies specialized in translation
and localization, or other kind of companies.

4.2.1 Translation companies completing the community work

Companies specialized in translation and localization of software may cover several cases where the
community or company developing a certain libre software cannot reach [Par11]:

 	Big projects as GNOME need great work due to the volume of translation. In addition
 to this, it is necessary to maintain different versions for localization (because there are
 multiple versions in the market). This stable work may be provided by a company.

 	Specific applications as OpenBravo may not produce enough synergies to attract
 volunteer translators, but it has enough number of users (or certain users) that want the
 software to be translated. A company may offer this work to the company that releases
 the software.

4.2.2 Services on libre software translation tools

Some of the services that can be deployed on top of libre software translation tools are the
following:

 	Install, maintain, support translation servers or websites.

 	Maintain, adapt and extend linguistic data.

 	Starting for a certain language pair, build data on another language pair.

 	Develop new tools based on the existent libre software.

Some examples of business with libre software translation tools

 	Acoveo1
 is a software development company offering several services and among them we can find
 www.translate-software.com, a solution for software localization consisting in
 a Maven plugin and a Jenkins plugin that are offered for free (under the AGPL license) to
 their customers. The Maven plugin takes care about extracting all the translatable strings
 of the client’s software, and send the strings to www.translate-software.com,
 where professional translators will localize them, at a certain price per word. The Maven
 plugin also takes care of retrieving the translated strings as resource files and integrate
 them back in the client’s software. The Jenkins plugin allows the customer to control at
 any time the localization workflow and progress.

 	A similar business is provided by ICanLocalize2 ,
 which offers website translation, software localization, Text translations and general translations.
 For website translations they have developed a Drupal module called “translation management”3 ,
 released under the GPL license, and the Wordpress MultiLingual Plugin4
 (which is licensed as GPL and offered at a certain cost, including the fees for the website
 content translation).

 	Transifex is a libre software project that turns on a company offering hosting and support
 on its platform. It is analyzed in section 6.3.3.

4.2.3 Localization tools as free software: a new market to explore

Deep knowledge about how the localization processes work in software projects, and the needs of
software translators may lead to know how the localization processes work “in general”, and the needs
of “general” translators. This opens a market niche to libre software developers, for creating new
translation help tools (for translating software or other kind of works), that can be used in the libre
software communities, but also in the professional translation area (competing with privative Computer
Aided Translation tools).

4.3 Social benefits

4.3.1 Reduce the digital gap

Localization allows users to interact with software in their own language via an intuitive way, and as
consequence, user’s proficiency increases. In addition to this, having a software localized
lowers the access barrier to certain groups without knowledge of other languages or being
under-educated.

4.3.2 Develop and promote minority languages

Minority language activists find libre software a very useful tool, since they can localize whatever libre

software to whatever language they want. Having literature and written documents in minority
languages has been the traditional way to ensure their survival as repositories of culture; in the
information technologies age, localized software is another way of cultural promotion of that
languages and language revitalization.

4.3.3 Localization results as free culture works

After any individual or community perform a localization tasks, there is an obvious result of this work:
the localization files of the software, in the target language. As the localization is done for a libre
software, those files will be under the free software license too, so they can be reused or modified in
future versions, and for different projects. But there are other results from the translation work that
they can be released as free cultural works or not: translation memories (a database that stores paired
segments of source and human translated target segments), glossaries (definitions for words
and terms found in the program user interface), and corpora (large and structured set of
texts). Releasing these structured linguistic databases with free culture licenses increases
dramatically the ease of performing new translations of many different software to the target
language, since translators of the new software count with powerful, productivity aids.
Some examples of these localization and translation databases released as free cultural work
are:

 	Galician Corpus Mancomun5 :
 As result of the Mancomun (the Reference Service Center for libre software in Galicia,
 promoted by Spanish Galician regional government) effort in translating several applications
 to Galician language, the Galician corpus Mancomun allows searches of words in English
 or Galician at any of the stored projects, providing English-Galician pairs of phrases
 where the text that was searched is found. In addition to this, there is an open API (through
 XML and XML-RPC) allowing plugin or application development and integration of the
 Corpus in other kind of computer aided translation software.

 	The Atshumato Project6
 was initiated by the South African Department of Arts and Culture, and its developments
 are done by the Centre for Text Technology (CTexT) at the North-West University (Potchefstroom
 Campus), in collaboration with the University of Pretoria. The general aim of this project
 is the development of open source machine-aided translation tools and resources for
 South African languages [CCfTTC12]. Among them, Atshumato releases Translation
 memories in the Translation Memory eXchange format (TMX) with Creative Commons
 Attribution Non-Commercial ShareAlike 2.5 license7
 for the following language pairs: ENG-AFR (English to Afrikaans), AFR-ENG (Afrikaans
 to English), ENG-NSO (English to Sepedi), NSO-ENG (Sepedi to English), ENG-ZUL
 (English to IsiZulu), ZUL-ENG (IsiZulu to English).

Chapter 5
Problems and challenges
 “Going international” is not a task exempt from risks or
problems. In this chapter I will show some aspects to take into account with respect to
internationalization, localization and translations.
 5.1 Internationalization problems

Projects that are designed without taking into account an internationalization perspective
may need a complete redesign of their interfaces, codebase and architecture in order to
make them translatable. This may be a lot of work, unaffordable for a small development
team.

 Sometimes the interface is designed with the original English locale in mind, and keeping it
flexible to fit the translated environment turns in a big challenge for developers or designers.
We can think for example the typical “Ok” button, which turns to 7 character text when
translated to Spanish: “Aceptar”. Other example is the decision to localize (or not) keyboard
shortcuts.

 In some cases, certain internationalization criteria are integrated in the project (for example, using
gettext for the text messages presented to the user) but not for other parts of the system (date formats,
measures...) and this situation derives in problems for the users of non-English locales
(they expect a completely localized system and may not deal well in the resulting “mixed”
environment).

5.2 Division of work and coordination problems

It is necessary a good communication channel and good coordination between developers and
translators to avoid problems and repeating tasks.

 For example, when a new release is near, it is common to find that translators make efforts to have all the
components of the project translated, while developers try to fix errors that may affect the interface or translatable

strings1 .

5.3 Crowdsourcing and quality of translations

Having a distributed team of collaborators, taking benefit of crowdtranslation, increases the number of
languages and strings translated but may introduce inconsistencies or quality problems. Some aspects
to take into account:

 	Neutral register: people translating to their own language may not be aware that they are
 using not a “neutral” register but a regional variation of that language.

 	Translating without creating glossary and agreeing on terminology may lead to inconsistent
 translations between the different members of that l10n-team, between the software and
 other components of a greater solution or distribution, or between releases (when old
 translators are not available anymore, and new translators introduce new terminology)2 .

 	Low access barrier to new contributors may introduce additional effort for reviewers.
 Since review software translations (some of them consisting in individual words or very
 short sentences) carry little effort compared with translating them from scratch, it may
 not be clear if it is worthwhile to maintain the “crowdsourcing” infrastructure for teams

 that already have a group of stable translators.

Chapter 6
Case Studies

 6.1 Internationalization tools

6.1.1 Gettext

GNU ‘gettext’ [Fou10] offers to programmers and translators a framework to help other packages
produce multi-lingual messages. This framework includes a set of conventions about how programs
should be written to support message catalogs, a directory and file naming organization for the
message catalogs themselves, a runtime library supporting the retrieval of translated messages, and a
few stand-alone programs to massage in various ways the sets of translatable strings, or already
translated strings.

History

The definition of the gettext interface comes from a Uniforum proposal. It was submitted there
by Sun, who had implemented the gettext function in SunOS 4, around 1990. The GNU
project took it and extended it. Nowadays, the gettext interface is specified by the OpenI18N
standard1 .

How it works

The gettext manual2
explains in details all the things needed to do in order to make gettext work. In figure 6.1

there is a general overview of the files handled by GNU gettext and tools acting on those
files.

[image: PIC]

Figure 6.1: Files handled by GNU gettext and tools acting on them

 From the point of view of the developer (or the person in charge of internationalize the code), we
briefly explain the steps to follow:

 	Import the gettext declaration and initialize the locale data.

 	Prepare the English strings to make them translatable: use entire sentences, split at
 paragraphs, usual markup…

 	Mark Keywords: all strings requiring translation should be marked in the C sources, to
 help xgettext at properly extracting all translatable strings when it scans a set of
 program sources and produces PO file templates, and also for triggering the retrieval of
 the translation, at run time. The canonical keyword for marking translatable strings is
 gettext() (it gave its name to the whole GNU gettext package), but it is usual to define
 and use the shortcut _(). It is possible to “send” comments for translators as parameters

 of the gettext() function, that will be stored in the output .po file just above the
 sentence to translate.

 	Make the PO Template File: invoke the xgettext program to parse the source code files
 and create a domainname.po, which should be renamed to domainname.pot. This
 file contains all the translatable strings, and will be used as template by all the translators.

 From the point of view of the translator, the steps to follow are:

 	Creating a New PO File: copy the .pot file and rename to LANG.po, being LANG the
 target locale. It is possible to automate this with the msginit command.

 	It is possible to modify the resulting LANG.po file with a text editor, or use a specific
 program to handle gettext catalog files (Poedit, the PO mode of Emacs, Virtaal…).

 	The PO file includes a header, with some initial comments as "SOME DESCRIPTIVE
 TITLE", "YEAR" and "FIRST AUTHOR EMAIL@ADDRESS, YEAR" ought to be
 replaced with the proper information, as well as other strings
 as Project-Id-Version (version of the package), Report-Msgid-Bugs-To
 (email address or url for bugs on translations), and other. Some strings are filled in
 automatically by xgettext as POT-Creation-Date, or by the editor when the file
 is saved, as PO-Revision-Date or Last translator or Language (if an editor
 capable to manage the meta information of PO files is used).

 	After the header, we can find the original English strings, with the format:

 msgid "text"

 and the strings in the target locale, in the format

 msgstr "text"

 which can be in different states:

 	Translated Entries: Only translated entries (and not marked as ’fuzzy’) will later be
 compiled by GNU msgfmt and become usable in programs. Other entry types will
 be excluded.

 	Fuzzy Entries: They are preceded by a line with the mark #,fuzzy, and usually
 call for revision by the translator.

 	Untranslated Entries: they are in the format msgstr ""

 	Obsolete Entries: they are marked as comment by using the character #

 	Comment lines may be found before each translatable string, showing the file and line of
 source code that includes that string, and other messages “sent” to translators by
 developers.

 	When the source code changes, new templates are generated. It is possible to merge the existing
 translated files with the new strings from the new templates using the msmerge
 command.

 	Gettext also includes a suite of commands for manipulating PO files, among them msgcat
 (concatenates and merges several PO files), msgconv (changes character encoding), msggrep

 (extracts strings with a given pattern), msgfilter (applies a filter to all translations), msguniq
 (unifies duplicate translations), msgexec (applies a command to all translations of a
 translation catalog), and other. These tools can be used to do maintenance and or quality
 assurance.

 The msgfmt command is used to build .mo binary translation files from the .po gettext
catalog files, which will be used at install time to produce the localized interface of the
program.

Key elements of success

 	GNU Gettext provides a consistent workflow and tools for each phase of the
 internationalization/localization process. This is nonexistent for other type of localization
 file formats as XLIFF, where independent tools can be found for some phases but there is
 not an integrated process.

 	The resulting localization files (.po) have a simple format (where the “ID” of the
 translatable strings is the string itself) so they can be easily understood and no special tool
 is required to work with them, an standard editor is enough.

 	Being free software, and used in the GNU project, it became quickly a de facto standard.

 	Many different programming languages are supported: C, C++, ObjectiveC, PO, Python,
 Lisp, EmacsLisp, librep, Scheme, Smalltalk, Java, JavaProperties, C#, awk, YCP, Tcl,
 Perl, PHP, GCC-source, NXStringTable, RST, Glade.

6.2 Translation tools

6.2.1 Text editor extensions

Emacs PO mode

Some tools for working with Gettext in Emacs can be found in the Emacs wiki
(http://www.emacswiki.org/emacs/Gettext):

 	PoMode: edit .po catalogs

 	po-mode+.el: extra features for PoMode, by Gaute Hvoslef Kvalnes (KDE and
 OpenOffice.org translator into Norwegian Nynorsk)

 	MoMode: view .mo compiled catalogs

Vim PO plugin

On the other side, Vim also have a plugin for working with PO files
(http://www.vim.org/scripts/script.php?script_id=695):

 	po.vim: ftplugin for easier editing of GNU gettext PO files, by Aleksandar Jelenak

6.2.2 Poedit

Poedit3
is a cross-platform editor por .po files (gettext catalogs). It has been introduced in section 3.4.2. It is
simple and well known among translators.

6.2.3 Virtaal

Virtaal4 is
a more modern translation tool, which allows working with XLIFF and many other kind of files. It has
been introduced in section 3.4.2.

6.2.4 Gtranslator

Gtranslator5
is the translation files editor in GNOME desktop environment. It allows to open several PO files in
tabs, plural forms support, automatic headers update, comments editing, management of different
translator profiles, use of Translation Memories, and other, including the fact that it inherits the Gedit
(GNOME text editor) plugins system.

6.2.5 Lokalize

Lokalize6
is the translation files editor in KDE desktop environment. It developed by Nick Shaforostoff, and it is
a replacement for former localization tool in KDE, Kbabel.

 It allows to open PO files as well as XLIFF files, and to use metadata (insert comments or notes),
Translation Memories and Glossaries.

 In figure 6.2 we can find a comparison between Poedit, gtranslator and lokalize, from
Ohloh.net7.

[image: PIC]

Figure 6.2: Comparison between Poedit, Gtranslator, and Lokalize (by Ohloh.net)

 6.2.6 Plugins or built-in localization tools

Some programs offer a plugin or tool to ease its own localization, instead of suggesting the user to use
an external tool.

Wordpress “Codestyling localization” plugin

The Wordpress plugin “Codestyling
localization”8
allows to generate and manage .po files for Wordpress itself or any installed plugin in the Wordpress
Admin Center, without need of an external editor. It has a connection with Google Translate API or
Microsoft Translator API to help translation task.

Drupal localization system

The Drupal Content Management System has its own modules for translating the Drupal Core and
Drupal modules without using an external tool. Indeed, it is the recommended way for localizing
Drupal. This case is analyzed in detail in section 6.3.5.

6.3 Web frameworks for crowdsourcing translation

6.3.1 Pootle

Pootle9

is a libre software web framework developed to help the localization of software projects. It was
created by the group “Translate.org.za” and later integrated in the project “Wordforge”. It uses many of
the tools available in the “Translation Toolkit”, providing an easy web interface to them, so the
translator does not need any knowledge about how these tools work or their syntax to obtain their
benefits.

 In figures 6.3 and 6.4 we can find a general overview of how a Pootle server looks like.

[image: PIC]

Figure 6.3: Overview of a Pootle server (1)

[image: PIC]

Figure 6.4: Overview of a Pootle server (2)

 Features

Pootle allows to organize the translation teams and the translation work, with the following main
features:

 	It is easy to deploy since it is packaged for many distributions

 	Allows many different file formats: bilingual formats (Gettext PO, XLIFF, Qt TS, TBX
 and TMX) and monolingual formats (Java properties, Mac OSX strings, PHP arrays,
 Subtitles in many formats)

 	It has integration with control version systems, committing changes with a detailed
 message which includes name of translator and number of translated strings.

 	Show real-time translation statistics and link to the translation files for downloading them
 and translating offline (Virtaal is the recommended tool).

 	Several management features as create and manage teams (with goals associated), assign
 work to various translators, roles and permissions, allow suggestions that need revision.

 	Online Translation Editor implementing many of the revision checks using the “Translate
 Toolkit”, machine translation, translation memory and terminology matching, and
 showing the information that translators need: the location of strings in file, translator or
 programmer comments, translation context.

 Pootle is released under the GNU General Public License (GPL).

Requirements

Pootle needs a web server (Apache) and a database server to run (several databases are supported). It is
written in Django, and uses the Translate Toolkit. Python, Python database bindings and lxml (Python
XLIFF support and HTML sanitation) are also required.

Documentation

There are many documents for the different roles using Pootle in the Pootle website, where a list of
external documentation can also be found.

Usage

The official Pootle server is pootle.locamotion.org, where Pootle is translated to 110
languages (see figure 6.5, as well as many other software projects.

[image: PIC]

Figure 6.5: The localization of the Pootle software

The webpage http://translate.sourceforge.net/wiki/pootle/live_servers offers
a wide list of other projects that use Pootle for managing localizations, among them:

 	Python documentation is translated in pootle.python.org

 	pootle.librezale.org is used for Basque translation projects

 	translate.contribs.org is the Pootle server for localization of the SME Open
 Source distribution

 	Mozilla Verbatim (localize.mozilla.org) is a Pootle server for localizing Mozilla
 websites and projects.

 	Scratch programming language is translated to 50 languages in
 translate.scratch.mit.edu

 	BOINC (Open-source software for volunteer
 computing and grid computing) server and client software are translated to 85 languages
 in https://boinc.berkeley.edu/translate

 	LibreOffice translations are managed in
 translations.documentfoundation.org

 	F-Droid project uses http://fdroid.org/translate

6.3.2 Weblate

Weblate10
is a web based translation tool with tight Git integration. It is developed by Michal Čihař
(PHPMyAdmin project leader) and licensed under GPL version 3. It pretends to be a replacement from
Pootle, taking out many of the less-used options, and improving the coordination with the Git
SCM.

Features

The main features of Weblate are the following:

 	Easy web based translation, including contextual information (see figure 6.6).

 	Propagation of translations across sub-projects (for different branches)

 	Every change is represented by Git commit, but on the other side it is possible to configure
 an option LAZY_COMMITS to group commits from same author into one if possible.

 	All changes are committed to Git with correct authorship.

 	Allows merging po files or automatically pull upstream changes.

 	Wide range of supported translation formats (Gettext, Qt, Java, Windows, Symbian and
 Android resources as experimental).

 	It has consistency checks, although less than Pootle (some of them removed for
 simplicity).

 	It uses Django Administration Interface.

[image: PIC]

Figure 6.6: Translation of PHPMyAdmin documentation to Greek, using Weblate

Requirements

Weblate needs a web server and a database server to run. It is written in Django, and uses the Translate
Toolkit, as Pootle. Other requirements are Python, GitPython, Django-registration and Whoosh
(Python indexing and search library).

Documentation

The documentation of the tool is in the website http://weblate.readthedocs.org and
mainly includes the usage guide (for translators), installation, configuration and administration
instructions (for the i18n team), the Weblate’s Web API, and a brief Frequently Asked Questions.
There is a demo server deployed in http://demo.weblate.org/.

Usage

Weblate is a very new tool (initial release on February 6th 2012), and as of June 13th 2012 it is used
for translating the projects lead by Michal Cihar (10n.cihar.com: phpMyAdmin, Weblate itself
and three more projects) and also for the Web-translation for LinuxCNC (computer control of machine
tools with Linux), at http://l10n.unpythonic.net/.

6.3.3 Transifex

Features

The main features of Transifex are the following:

 	Support of many different file formats: Gettext files (.po, .pot), QT Linguist (.ts), Java
 properties (.property), Android resources (.xml), Joomla lang packs (.ini), html, xhtml
 and any strings over API.

 	An extensive API to integrate tools with Transifex.

 	Creation of language teams.

 	Built-in Translation Memory storing translations and offering suggestions whenever a
 sentence ”matches” prior translations.

 	It is possible to label a project “Private” and hide it from public viewing.

 	Built-in message system so translators and project managers may send each other
 notifications (received by email).

 	View translation history, track changes and revert to older versions.

 	Automatic daily pulls to public SCM repositories.

 	Command-line client to manage large projects and automate your workflow.

Requirements

Transifex is written in Python, and needs a web server and a database server to run. Other
dependencies are Django, Gettext, and intltool (for dynamic POT-file generation).

Documentation

The website http://help.transifex.com offers a wide documentation for translators and
project managers, as well as detailed instructions on how to deploy your own Transifex
server.

Usage

Transifex is a Google Summer of Code (GSoC) success story [End11]. Dimitris Glezos developed
Transifex for the Fedora Project in 2007, and later he re-wrote it from scratch to make it more
scalable and extensible. In 2008 he founded Indifex, to host Transifex SaaS platform which in
2011 is used by 2.000 open source projects and 10.000 users, and offer support services.
In late 2011 they began to offer pricing plans for proprietary software projects, keeping
the software itself free, and free of charge hosting and support for libre software projects
(figure 6.7).

[image: PIC]

Figure 6.7: Pricing plans in Transifex

 Some relevant projects using Transifex for their translations are: The FreedomBox Foundation (for
their website), DoudouLinux (a Linux distribution for children), OpenTranslators (translations for all
open source projects that are related to Joomla!), OwnCloud, Zotero citations manager, the Fedora
Project (including also websites and documentation), Universal Subtitles (subtitling for online video),
and many other.

6.3.4 Launchpad Translations (Rosetta)

Launchpad11
is the software forge developed by Canonical, initially to host the development of Ubuntu Linux
distributions, and later released as free software under the GNU Affero General Public License,
version 3. Launchpad includes Bazaar source code management system, a bug tracking system, Ubuntu
package building and hosting, and other kind of tools; among them we can find Launchpad
Translations (which former name was Rosetta).

Features

Launchpad takes benefit from crowdsourced translation. It has a simple web-based translation and
review, GNU GetText support and automatic suggestions from a library of sixteen million translated
strings.

 	It is possible to choose how open your project is to new translators: open (everyone can
 translate), partly restricted and structured (anyone can suggest translations, while trusted
 community members review and approve new work), or closed (only approved translators
 may make suggestions).

 	The supported file formats are pot, po and mo (for offline as well as online translation),
 and it is possible to import Mozilla’s XPI format.

 	About licensing, it is required that all translations made in Launchpad are BSD licensed12
 (so they can be part of Launchpad’s database and serve as suggestions to any kind of
 project, as shown in figure 6.8).

[image: PIC]

Figure 6.8: Launchpad suggestions from other projects

 	It has a good integration with the Bazaar source code management system, in the sense that it
 allows automatic imports of templates from the Bazaar repository, and allows to make
 regular commits to a Bazaar branch you specify for updating the translations made via
 website (that commits overwrite the translation files present in the repository with
 the ones from the website). It is also possible to manually upload and download the
 files.

 	For translators, Launchpad acts as a central repository, in the sense that your Launchpad user
 account is associated with the languages that you choose to translate, and then, you choose the
 projects where to contribute (upstream projects, or the Ubuntu distributions).

 	Launchpad shows statistics of translations, to give an overview of the status of each project,
 language or file (see figure 6.9).

[image: PIC]

Figure 6.9: Launchpad translation statistics

Documentation

The Documentation for users of Launchpad translations is in the website
https://help.launchpad.net/Translations, integrated with the general Help of
Launchpad.

Usage

As of June 13th, 2012, Launchpad database stores 1,923,617 strings in 33,465 translation templates, in
332 languages. There are 63,724 translators registered and 42 translation groups. It is possible to
contribute to the translation of the Ubuntu Linux distributions version 6, 8, 9, 10, 11 and 12; and also
to 1,470 projects, among them the OpenShot Video Editor, the OpenERP Server, Web and Add-Ons,
Blender Animation Design software, the Linux Mint Distribution, the Astronomer’s program
Stellarium, and many others.

6.3.5 Drupal localization system

Drupal13 is
a Content Management System with a very modular infrastructure. It is written in PHP and both
Drupal core and Drupal modules manage localization in the same way.

 In table 6.1 some quick statistics can be found about localization in Drupal.

 	
	

	 Name of the project:
	 Drupal

	
	

	 Main website:
	 http://drupal.org

	
	

	 I18n website:
	 https://localize.drupal.org

	
	

	 Number of languages:
	 103 translation groups

	
	

	 Translation team(s) and
 coordinator(s):
	 Each team has its own organization

	
	

	 L10n tools/platform:
	 localize.drupal.org

	
	 + Localization Update Module

	
	

	 Contributors and modules
	 4,200 contributors, 8,247 projects

	
	

	

 Table 6.1: Summary of Drupal localization

 Internationalization work

Drupal recommends to follow the internationalization guidelines to make easy the localization of any
piece of software.

 The objects to be localized in Drupal are the following:

 	Text showed to the “Drupal Administrator” in the installation process and Administration
 Dashboard and tasks. This strings are part of the Drupal PHP code and usually can be
 found in the corresponding .pot templates. For new developments, it is recommended
 to abstract these kind of text from the rest of the code using the t() function.

 	Text that are showed to the user or visitor of a website and messages. For example, labels
 showing “Site map”, or “Home” in a frontpage, “Next” or “Read more” when showing a
 list of different pieces of content. These strings are “configurable” in the deployed Drupal
 Administration Site. For Drupal developers, it is recommended to offer a default English
 string for all these kind of fields, which should be also internationalized using the t()
 function, and then can be easily localized in order to provide “localized default strings”
 to the deployed Drupal websites.

 About Drupal infrastructure for localization, Drupal was using CVS as control version system but
in the beginning of 2011 they migrated to Git. Along with this change, other different (but related)
decision was made: start to use their own web platform http://localize.drupal.org to
manage translations [new10]. Although the translation was going to keep on using .po files,
this approach separates the “code development” and the “translation development”. The
main positive aspect is that they can attract many new translators that are Drupal users but
don’t know anything about developing, git and po files. On the other hand, if anybody
goes to the git repositories to get all the Drupal code, she will not find the translation files
there.

Localization work

On translators side, Drupal offers the “Localization update” module
(http://drupal.org/project/l10n_update) to deploy in the Drupal websites and make
easy translation, the localize.drupal.org website where it is possible to join a team, online
translate and review translations, and a synchronization system to retrieve translations from users
Drupal websites, and send them the reviewed and accepted strings (using the Localization update
module).

Maintenance and Quality Assurance

Suggestions are not be included in downloadable translations, and will need to be approved by an
authorized user before becoming a translation.

6.4 Translation projects and teams

6.4.1 GNOME

GNOME Project14
is a community that develops a GNU/Linux graphical desktop environment.

 GNOME is one of the most used graphic desktops in GNU/Linux systems. The project includes not
only window manager and system administration tools, but a complete set of applications for many
different purposes as text editor, multimedia player, web browser and email client, CD

recorder...

 The main site of the project is http://live.gnome.org, and the information about
localization can be accessed in “Damned Lies” web platform (http://l10n.gnome.org/).

 GNOME software uses GTK+ development kit, which works with some tools for internationalization
as gettext, and produces PO files.

 The GNOME source code is managed with git repositories. Damned Lies has no git support so the
changes have to be manually committed to the git repositories by the translators with git
access.

 Table 6.2 provides a summary of the localization of the project.

 	
	

	 Name of the project:
	 GNOME

	
	

	 Main website:
	 http://gnome.org

	
	

	 I18n website:
	 https://live.gnome.org/TranslationProject

	
	

	 Number of languages:
	 178 registered; 50 released[Kov12]

	
	

	 Translation team(s) and
 coordinator(s):
	 Christian Rose, Mario Blättermann, Gil Forcada,
 Gabor Kelemen, Andre Klapper, Petr Kovar,
 Claude Paroz, Johannes Schmid, Simos Xenitellis,
 Wouter Bolsterlee, Og Maciel

	
	

	 L10n tools/platform:
	 Damned Lies http://l10n.gnome.org

	
	

	

 Table 6.2: Summary of GNOME localization

 The localization workflow in GNOME

Gil Forcada, with the feedback from other community members, conducted a GNOME I18N Survey in
August 2010, by sending a questionnaire to every GTP (GNOME Translation Project) language
coordinator, and collecting answers. From that results[For10] and the information provided in the
GNOME website, we have drawn the localization process:

 	Objects to be localized: modules, documentation. Both are in gettext portable object
 format (.po files).

 	Internationalization framework: mailing lists, language teams with coordinators,
 localization guide (general), GNOME Documentation Style Guide, Git access for
 manually committing changes to the repository. There is additional information provided
 for developers: Handling String-Freezes, Translation Coverage Statistics for your module

 	Localization framework: all teams use mailing list for coordination, and most of the
 teams have glossaries and translation guidelines. To keep track of translation issues most
 use bugzilla and/or Damned Lies.

 	Quality and maintenance: 19 out of 36 teams (52%) pass QA tools before committing.
 19 out of 36 teams (52%) start working around string freeze (1 month before next
 GNOME release). Some scripts for helping QA and maintenance are developed and
 provided in https://live.gnome.org/TranslationProject/Scripts

Other remarkable aspects

 	Teams range from 1 or 2 to +15 members (average to 3 members per team)

 	Nearly all work is made by volunteers (only 2 or 3 teams have paid members)

 	There’s a good relation with downstream translators (Ubuntu, Fedora, and other
 GNU/Linux distros)

6.4.2 KDE

KDE15
is other of the most used graphic desktops in GNU/Linux systems. As GNOME, the project includes
not only window manager and system administration tools, but a complete set of applications for many
different purposes as text editor, multimedia player, web browser and email client, CD recorder…The
main site of the project is http://www.kde.org, and the information about localization can be
accessed in the web http://i18n.kde.org.

 KDE software uses Qt development kit, and PO files for localization. Parts of text are sometimes
presented to the user in special format as bold or italic, title sized, etc with XML-like text
markup.

 The KDE source code is managed with Subversion repositories.

 KDE uses custom tools to internationalize the GUI and documentation of programs. gettext, and
produces PO files.

 Table 6.3 provides a summary of the localization of the project.

 	
	

	 Name of the project:
	 KDE

	
	

	 Main website:
	 http://kde.org

	
	

	 I18n website:
	 http://l10n.kde.org

	
	

	 Number of languages:
	 52 (released)[Ast12]

	
	

	 Translation team(s) and
 coordinator(s):
	 Albert Astals

	
	

	 L10n tools/platform:
	 Lokalize

	
	

	

 Table 6.3: Summary of KDE localization

 The localization workflow in KDE

Based on the available information in KDE website, and in particular in the Localization
webpage [KDE12], we have drawn the localization process:

 	Objects to be localized: user interface, documentation. Both are in gettext portable object
 format (.po files) and sometimes have XML-like markup for text font and style. A guide
 for localization of non text resources is available at http://techbase.kde.org/Localization/Concepts/Non_Text_Resources

 	Internationalization framework: mailing lists, language teams with coordinators,
 Techbase Localization Tutorials, SVN access for manually committing changes to the
 repository.

 	Localization framework: all teams use mailing list for coordination. The main tool for
 localization is Lokalize, a computer-aided translation (CAT) tool, a full-featured GUI
 application, written from scratch using KDE4 framework. Aside from basic editing of PO
 files, it integrates support for glossary, translation memory, project managing, etc.

 	Quality and maintenance: Lokalize supports diff-modes for QA. Other tools for QA are
 recommended as Lbundle Checker for tracking changes on non-text localized resources,
 Translate Toolkit and Pology.KDE teams use “Ascription” system for reviewing translation
 work and include that information in the control version system. Details of the Ascription
 Workflow are given in http://techbase.kde.org/Localization/Workflows/PO_Ascription.

Other remarkable aspects

In section B.3 the reader will find an interview to the internationalization team coordinator in KDE,
Albert Astals.

6.4.3 Debian

Debian16 is
“the universal operating system”, a multi-architecture software distribution that ships Linux or Hurd
kernel, the GNU Project software, different desktops and many software packages for multiple
purposes.

 Table 6.4 provides a summary of the localization of the project.

 	
	

	 Name of the project:
	 Debian

	
	

	 Main website:
	 http://www.debian.org

	
	

	 I18n website:
	 http://www.debian.org/international

	
	

	 Number of languages:
	 70 (Debian-installer stable release)[Per12b]

	
	

	 Translation team(s) and
 coordinator(s):
	 Christian Perrier

	
	

	 L10n tools/platform:
	 No particular tool recommended

	
	

	

 Table 6.4: Summary of Debian localization

 The localization workflow in Debian

Based on the available information in the Debian website, we have drawn the localization
process:

 	Objects to be localized: The Debian localization projects focus on translation of the
 installation system (the “debian-installer”), Debian documentation, Debian webpages and
 wiki pages, and Debian-related packages (specific Debian tools as dpkg package manager).
 They also translate the “debconf templates”: messages presented to the user when a new
 package is installed to the system17 .

 	Internationalization framework: Each language has a localization team which uses
 a wiki and a mailing list to handle the work. There is a robot that listens to the l10n
 mailing lists, and understands pseudo-urls in the subject header. The pseudo-urls have a
 certain form, including tags for the coordination of translations: ITT (Intent To Translate),
 RFR (Request for Review), LCFC (Last Chance for Comments), BTS#bug_number or
 DONE#bug_number. Changes are uploaded to the repositories by package maintainers
 (translators send the files to upload to the Bug Tracking System with the category of
 ’wishlist’). All the localization teams are coordinated by the Christian Perrier, who has

 permissions to update the repositories if package maintainer is missing in action.

 	Localization framework: all teams use their mailing list for coordination. There is no
 particular recommended tool for translations.

 	Quality and maintenance: Quality of translations is ensured by the mailing list
 coordination and peer review.

Other remarkable aspects

 	Christian Perrier, translation coordinator, maintains a blog [Per12a] where he
 periodically writes about the process of localization in Debian. In 2011 he was
 interviewed by Raphael Hertzog (another Debian Developer) [Her11].

 	In section B.4 the reader will find an interview to Javier Taravilla, member of the Spanish
 localization team in Debian.

6.4.4 Tux Paint

Tux Paint18
is a libre software drawing program for children ages 3 to 12. It is used in schools around the world as

a computer literacy drawing activity. It combines an easy-to-use interface and fun sound
effects.

 In June 9, 2012, Tux Paint turns 10 years old.

 The main site of the project is http://www.tuxpaint.org, and the information about localization
can be accessed in the “Help Us Translate” web page (http://www.tuxpaint.org/help/po/).

 Tux Paint is mostly written in C and uses gettext for internationalization, producing POT and PO
files.

 Table 6.5 provides a summary of the localization of the project.

 	
	

	 Name of the project:
	 Tux Paint

	
	

	 Main website:
	 http://tuxpaint.org

	
	

	 I18n website:
	 http://www.tuxpaint.org/help/po/

	
	

	 Number of languages:
	 85

	
	

	 Translation team(s) and
 coordinator(s):
	 Bill Kendrick (Lead Developer)

	
	

	 L10n tools/platform:
	 None / Official Pootle Server (for some languages)

	
	

	

 Table 6.5: Summary of Tux Paint localization

 The localization workflow in Tux Paint

Based on the information provided in the Tux Paint website, we have drawn the localization
process:

 	Objects to be localized: application, stamps add-on, configuration, website,
 documentation. All of them are in gettext portable object format (.po files), except
 documentation that it is in plain text or HTML format.

 	Internationalization framework: there is a mailing list for i18n. The website includes
 information about how to begin translation. Translator without commit access to the
 repository should email the translated files to Bill Kendrick (Lead Developer).

 	Localization framework: all teams use mailing list
 for coordination. Some teams use the Official Pootle Website for managing translations
 (http://pootle.locamotion.org/projects/tuxpaint/).

 	Quality and maintenance: There is no official information about this topic in Tux Paint
 website.

Other remarkable aspects

 	Tux Paint users who use languages requiring their own fonts can download pre-packaged
 TrueType Fonts for Tux Paint.

 	There is a webpage19
 dedicated to mention the most important contributors to Tux Paint, which includes a
 specific mention to Fabian Franz for his work internationalizing the code.

6.4.5 Pleft

Pleft20
is a web platform for planning appointments in a collaborative way. Once you register an account
in their website, you can create a meeting, defining the title, description, proposed date
and hour, and list of participants. Each participant will receive an email with a link to the
meeting, where she can state her availability for each proposed date, and suggest alternative
dates.

 Table 6.6 provides a summary of the localization of the project.

 	
	

	 Name of the project:
	 Pleft

	
	

	 Main website:
	 http://www.pleft.com

	
	

	 I18n website:
	 https://www.transifex.net/projects/p/pleft/

	
	

	 Number of languages:
	 9 (7 in the stable release)

	
	

	 Translation team(s) and
 coordinator(s):
	 Nobody (Sander Dijkhuis, project leader)

	
	

	 L10n tools/platform:
	 Transifex

	
	

	

 Table 6.6: Summary of Pleft localization

 The localization workflow in Pleft

Based on my own experience contributing to Pleft translations in Appendix C, I have drawn the
localization process:

 	Objects to be localized: Server strings, Website client strings, Android client strings,
 Email texts, Marketing material

 	Internationalization framework: Pleft is developed in Python, and uses Django
 templates [Fou12a] for internationalization of server and client text strings. Pleft
 developers have created a project in Transifex web localization platform to allow
 everybody to collaborate in translations (see figure 6.10). Pleft developers are the ones
 in charge of approve the creation of new language teams. There is no internationalization
 coordinator nor mailing list specifically created for internationalization or localization.
 However, the Transifex platforms includes a built-in message system that can be used for
 these kind of communication. Marketing material is not handled using Transifex. Project
 leader contacts by email or by the Transifex platform to the language teams and send
 the texts to be translated. There are no public internationalization guidelines specific por
 Pleft.

 	Localization framework:As of June 9th, 2012, Pleft is released in the following
 languages: English, French, German, Italian, Russian, Dutch, Spanish. In Transifex
 platform there are 2 more teams: Spanish (Castillian) and Swedish. There are no specific
 localization guidelines, the project trust on Transifex platform. If localization teams need
 to get their translations integrated in a live, test site, they can ask for it to the project
 leader.

 	Maintenance and Quality Assurance: Transifex allows to handle translation reviews
 and also has a built-in spell checker. In addition to this, it shows the context information
 of each translation string in a tab called “details”: String ID, Description (but this field
 is not fulfilled), Comment (also usually empty), Occurrences (linking to the source code
 files). There is no specific treatment for bugs related to localization. General issue tracker
 may be used. To test or deploy translations, it is needed to install gettext and run python
 pleft/manage.py mo. New versions of internationalization files may appear and
 localization teams not being aware of them, since there is not an internationalization
 mailing list or communication channel to get subscribe yourself.

[image: PIC]

Figure 6.10: Overview of Pleft translations in Transifex

6.4.6 The power of open: The Debian Administration Handbook

The Debian Administration handbook is the English translation of the “Cahier de l’admin Debian”, a
book written by Raphael Hertzog and Roland Mas, two Debian Developers with a large career of
contributing to the Debian project. This book was printed initially with Eyrolles, a French “traditional”
editor, which holds the copyright of the work.

 However, authors of the book wanted to translate the book into English and republish it under a
free license, so all the Debian community would benefit. They set up a crowdfounding
project to gather the required money to pay their translation work, so authors would be free
to offer the new version of the book as free, redistributable, translatable and modifiable
work.

 Several months after they created the crowdfounding project, the “liberation fund” was reached. In
May 10th the book was released under a CC-BY-SA licensed and freely (with no cost)
available as electronic book in its website. In addition to this, sources were published in
one of the Debian project git repositories, and a Debian package for installing the book
(downloading it and creating a start menu shortcut) was uploaded to “Sid”, the Debian version
created to receive new software from upstream and test before integrate it in the more stable
releases.

 After this work well done, authors of the book couldn’t event take two weeks vacation: Debian
community gave a warm welcome to liberation of this book and even before than its website was
updated including instructions for translation in the “Contribute” section, several localization teams
had been already created to handle the localization to their respective language, setting up clone
repositories, mailing list or other kind of communication channels, and committing the first changes
with translation to them.

 In May 23rd, Raphael Hertzog, acting as a kind of benevolent dictator, sent a mail to several people
that contacted him about how to translate the book, and he explained how the localization should be
done and created a mailing list in the Debian project to coordinate the work. He also updated the
website including this information (figure 6.11).

[image: PIC]

Figure 6.11: Information about Translations in the Debian Administration Handbook’s website

 That action has been vital in order to integrate the localization of the book with the general project
and avoid unneeded forks that would become difficult to maintain and update when new versions of the
book are released.

The localization workflow in “Debian Administration Handbook”

 	Objects to be localized: text, screenshots, diagrams.

 	Internationalization framework: mailing lists, coordinator for each language, git
 repository for changes, Publican for the generation of templates to translate, instructions
 on how to contribute to the project.

 	Localization frameworks: each team may organize themselves as they want. Spanish,
 Russian and German are some of the languages that set up a localization framework
 before the book’s authors detailed the internationalization and localization framework.

 	Quality and maintenance: git branches, git rebase before pushing changes, participation
 of original authors, that are also translators since they did the French to English translation
 before the release of the book as free culture. Several localization teams are thinking about
 using Weblate as web translation platform, which includes a set of tests for Translation
 Quality Assurance.

Other remarkable aspects

Although the infrastructure for internationalization and localization (Git repository, mailing lists) are
deployed inside the Debian community (the Alioth forge), currently the project is treated as one more
upstream project, in the sense that it has its own translation teams apart from the Debian i18n and l10n
teams.

Chapter 7
Conclusions

 7.1 Evaluation

In chapter 3, I have explained the different phases of localization process, describing tasks, tools and
people involved. A minimum set of two examples for each phase has been given, and new trends have
been covered, as the XLIFF standard format, the use of collaborative models and web based tools
(some of them released recently as Weblate).

 Origin and motivations for people getting involved in libre software translations have been
explained in section 3.6.

 Chapter 4 analyzed the benefits that caring about localization brings to the libre software
community and society in general, and in chapter 5 some examples of possible internationalization
and localization problems, to take into account, were explained.

 A variety of software projects that carry out localization task and tools for supporting that
processes have been provided, as well as personal experiences of different translators.

 We can conclude that a panoramic view of the localization in libre software projects
has been presented, and the reader may understand the complexity and diversity of the
processes, but also feel there are many opportunities to get engaged and take benefit of libre
software.

7.2 Lessons learned

7.2.1 Key aspects of localization in libre software projects

 	Libre software communities have set up a wide range of tools to help the localization
 process.

 	The communication channels and coordination between the different teams is crucial and
 can be boosted with automation, but “human touch” is still needed.

 	Allowing external contributions, if specific guidelines are provided, may improve quantity
 and quality of translation, as well as produce other kind of benefits for the business
 environment and society in general.

 	As conclusion, we can say that internationalization and localization in libre software
 projects are two of their most interesting advantages for dissemination, competition with
 privative alternatives, and penetration in new markets.

7.2.2 What did I learn

 	Gathering information about how localization is performed in the different libre software
 projects helped my own evolution as translator and improved the quality of my
 translations, since I had more knowledge and resources to use.

 	There are very new and powerful translation platforms (for example Transifex) that
 are taking advantage of the traditional and quality internationalization tools as Gettext.
 This made me value the internationalization effort developed by the libre software
 communities in the “early years”.

 	Libre software projects is not just about “coding”. Many people are involved in
 localization of libre software, with very different ranges of commitment, but they are part
 of the community and their work is better understood and considered each day.

7.2.3 Knowledge and skills acquired in the M.Sc. studies that helped me on this work

 	Introduction to libre software and Legal aspects of libre software provided the basic
 framework to understand how libre software works and its history and evolution along
 the years. Now I know that the software license may be applied for example to translation
 files, and to certain parts of documentation that are released altogether with the software,
 but translation memories or glossaries used for performing localization tasks may be
 released as free cultural works or not, since they are different works from the localization
 files.

 	Economic aspects of libre software made me discover the different motivations of
 individuals, companies, public administrations, academic and research institutions, non
 profit organizations... to get involved in free software in general, and in translation in
 particular. Having a program localized to a certain language may open new markets or
 new business or may be used as a way of political or cultural activism.

 	Communities subject gave me the tools and skills needed to perform data mining on
 software repositories. Although this kind of approach has not been used in this work, I
 know how this can be done so I have been able to draw a possible empirical approach in
 section 7.3.

 	Project evaluation, Project management and Developers and motivation subjects
 made possible for me to assess software projects as a whole, taking into account not
 only the code or how the software works, but also how is the community, which
 roles and processes are involved and on which people they depend. I also learned that

 good documentation and communication channels are key aspects for reaching new
 contributors and sustainability of the projects.

 	In Case Studies I and Development and tools, I learned how to use Git, the control
 version system that I used to keep track of the history of changes to this document, and
 helped me to contribute translations in Android software projects in the last months.
 Advanced Development helped me to better understand how Android applications are
 developed and encourages me keep being involved in F-Droid project, and try to help on
 the internationalization pending work.

 	Thanks to Case Studies II subject, I met some translators (Pedro García, Albert Astals)
 that kindly accepted to be interviewed for this work. I also met in depth the GNOME and
 KDE desktops which localization systems are analyzed in chapter6.

 	Systems Integration subject in conjunction with the interview to Miguel Vidal as
 OpenBSD translation coordinator gave me the idea of keeping track of the history of the
 Debian Administration Handbook, and its predictable explosion of translation works after
 it was released with a free cultural work license.

7.3 Future work

7.3.1 More on localization results as free culture works

Some examples of standardized, quality translation results delivered to the public have been
introduced in section 4.3.3; they are driven mostly by Public Administrations, since the

professional translation world is usually reluctant to provide their translation memories to the
community.

 The community work on translations usually provide results with lack of standardization
in translation formats: PO, PHP, CSV, XLIFF... This makes difficult the re-utilization of
translations.

 It could be interesting to continue the research in order to learn what kind of measures can be taken
in order to overcome this limitation and increase the reusability of translations.

7.3.2 Apply libre software techniques to cultural works localization

There are other kind of projects, different than software, that are using similar processes
and tools for localization, and taking also benefit of the increment of productivity. Among
them, we have for example the collaborative project for subtitle translations of TED
Talks1 , or the translations
within Wikimedia projects2 .

7.3.3 Mining for localization in libre software projects

Due to the availability of the source code of libre software projects, and the fact that many of them use
an SCM (Source Code Management) system that keeps track of the history of changes to all
the files, it is possible to inspect the source tree or mine the SCM logs to get information
about the software. This would provide factual details about how localization is driven
and may even throw hints about vulnerabilities in the process (as, for example, long-time
untouched translation files with may mean that there are parts of the project that are outdated or
unmaintained).

 In Appendix D an initial analysis have been performed on Tux Paint project to show how this
mining could be done. Some metrics and results are presented, although a much more in-depth
research would be needed, specially if we want to compare the situation of two or more different
projects.

Appendix A
Libre software tools for localization
 Libre software communities use libre software
tools to carry out their localization tasks.
Mata [Mat08] has researched about the presence of free software in the IT environments used
by translators in general (not necessary translating libre software). Cánovas [CS08] and
Díaz-Fouces [Fou08] show that there are mature, libre software tools that they can use. Some of them
have been already introduced as case studies. Other applications can be found in directories
in [FA11] and [Cor11]. In this appendix we provide a list contained all the tools mentioned
in this document, and other among the most relevant tools, based on former referenced
literature.

 	
	

	 Damned Lies 	 l10n.gnome.org

	
	

	 Drupal localization 	 localize.drupal.org

	
	

	 Gettext 	 www.gnu.org/software/gettext

	
	

	 Gtranslator 	 projects.gnome.org/gtranslator

	
	

	 Launchpad 	 www.launchpad.net

	
	

	 Lokalize 	 l10n.kde.org

	
	

	 Poedit 	 www.poedit.net

	
	

	 Pootle 	 translate.sourceforge.net/wiki/pootle

	
	

	 The Translate Toolkit 	 translate.sourceforge.net

	
	

	 Transifex 	 www.transifex.net

	
	

	 Virtaal 	 translate.sourceforge.net/wiki/virtaal

	
	

	 Weblate 	 weblate.org

	
	

	

 Table A.1: List of the localization tools analyzed in this work

 	
	

	 Anaphraseus 	 anaphraseus.sourceforge.net

	
	

	 Apertium 	 www.apertium.org

	
	

	 bitext2tmx 	 bitext2tmx.sourceforge.net

	
	

	 Jubler 	 www.jubler.org

	
	

	 Mozilla Firefox useful plugins: 	

	 WordReference, Answers.com 	

	 (dictionary and thesaurus), 	

	 QuickTranslation, Converter, FoxLingo 	 addons.mozilla.org

	
	

	 Okapi Framework: Rainbow, 	

	 Olifant, Album, Tikal, Abacus 	 okapi.sourceforge.net

	
	

	 OmegaT 	 www.omegat.org

	
	

	 OmegaT+ 	 omegatplus.sourceforge.net

	
	

	 OpenLanguage Tools 	 open-language-tools.java.net

	
	

	 OpenTrad 	 www.opentrad.com

	
	

	 Subtitle Edit 	 www.nikse.dk/SubtitleEdit

	
	

	 TranslateWiki 	 translatewiki.net

	
	

	 Transprocalc 	 code.google.com/p/transprocalc

	
	

	 Wordforge 	 sourceforge.net/projects/wordforge2

	
	

	

 Table A.2: List of other localization tools

Appendix B
Interviews to translators

 B.1 Miguel Vidal, OpenBSD Spanish Documentation

1.- Please introduce yourself and explain how and when did you start with libre software
translations.

 Since 1999, I have been involved in the Spanish-speaking free software community and other open
source software projects related to Linux, OpenSolaris and (more recently) OpenBSD. I’ve been
working as a Linux and Unix System Administrator since 2001. I’m focusing mainly on architecture
design and server deployments with Unix and Linux systems.

 My contributions to free software translations has been really humble and short.
It all comes down to being in charge of the Spanish translation of the OpenBSD
documentation1 .

 Furthermore, I made a few FLOSS translations ten years ago. For example, I contributed to Catalan translation of GNU
nano2 3 ,
a text editor designed as a free replacement for Pico. But these were only occasional contributions.

 2.- Which tools are available/recommended in the project to help translators? Which ones do
you use? (For example, there is a Pootle server but you usually download the PO file and
translate it offline).

 I’m translating web documentation, not source code. So, I don’t work over .po files, but HTML
files. My environment consists of the following tools:

 	A text editor (’Vim’)

 	A ’diff’ tools

 	An HTML link checker (’linkchecker’)

 	An HTML validation program (’validate’)

 	A CVS client for commits (yep, OpenBSD project uses a CVS repository)

 3.- Is there a translation team in the project? Which are the revision processes? Do you focus
on revision or on translating the untranslated strings?

 Yes, there is a translation team coordinated by Antoine Jacoutot and Benoit Lecocq.
Furthermore, each project translation has a person responsible who facilitates sporadic
contributions/contributors, checks quality translations and makes commits. So, as Spanish
responsible, I have to face both issues: revision and translating/updating the untranslated
things.

 4.- Since you started to get involved in this project, did you increase your contributions to
libre software? (For example, translating more languages, doing other kind of contributions to
the project as bug reporting or programming code, or participating in other libre software
projects as translator...)

 Yes, maybe since then I have been more involved in the OpenBSD community, I’ve made some
patch and bug report, etc.

 5.- Which are the benefits you perceive for contributing in libre software translations? Any
bad counterparts?

 Benefits are to participate and contribute to free software community without being a
developer/hacker. Also, in OpenBSD case, read and learn from their great documentation.

 The counterpart is that it’s a hard, steady work, lonely and often undervalued. Maintaining the
translation up to date is critical: offering outdated information will just misguide people. So you must
think if you really will be able to dedicate regularly to the translation work.

 6.- Which are your future plans?

 I would like to continue to keep up to date Spanish translation. When I took care of Spanish
translation in 2010, it was orphaned since six years ago! So, there is much work to do. It’s a long term
job.

 7.- Anything else you may say?

 The OpenBSD project aims to maintain many high standards, one of them is to supply users with
excellent documentation. A documentation error (or lack) is considered a serious bug and treated as
harshly as any other serious bug. Thus, helping in such demanding project is a great challenge and a
big responsibility. I’m very proud to do my bit.

B.2 Pedro García, Support Mozilla Messaging (SuMoMo)

1.- Please introduce yourself and explain how and when did you start with libre software
translations.

 Hi! My name is Pedro Garcia Rodriguez and I’m part of the Mozilla SuMoMo, SuMo, l10n and
Mozilla-Hispano communities.

 2.- Which tools are available/recommended in the project to help translators? Which ones do
you use? (For example, there is a Pootle server but you usually download the PO file and
translate it offline).

 Almost everything I do translating software for Mozilla is done via a special wiki, called
KitSune…developed by Mozilla to provide support to their users. It’s easy to use so this is what
makes it powerful but doesn’t have the utilities that for example can have other translation
utilities.

 The part of my work that is not done via KitSune is done via Pootle…so here is where I stop
translating…I hate Pootle and PO files…

 3.- Is there a translation team in the project? Which are the revision processes? Do you focus
on revision or on translating the untranslated strings?

 Mostly all my work is done translating new articles or updating old ones…I find difficult done my
on translations, revision them and accept them…I told you this because doing everything is not a hard
work but after reading and writing, reading and writing, reading and writing, you start
to fail seeing your own errors so I leave this part of the work to the “revision team” of
Mozilla-Hispano.

 Even if I am making a revision of an article and make changes I send it to a different person to not
avoid my mistakes…

 4.- Since you started to get involved in this project, did you increase your contributions to

libre software? (For example, translating more languages, doing other kind of contributions to
the project as bug reporting or programming code, or participating in other libre software
projects as translator...)

 I started on this while I was bored in my room alone in Madrid…I’m from Pontevedra and I’m alone
here in Madrid so I decided to do something useful and different…

 I started the Galician translation of SuMoMo.

 5.- Which are the benefits you perceive for contributing in libre software translations? Any
bad counterparts?

 The work that I am doing as translator and being an active member of the Mozilla Hispano
community allow me travel the world…I have been in Berlin, Prague…

 I missed the Wishtler Summit last year and in two months I will be in Buenos Aires…That’s the
reward for the work I’ve done all these years.

 6.- Which are your future plans?

 Quit translation!!!! Right now I have in mind contributing in a different way so when I complete
the 100% of the Spanish translation of SuMo…I’m done!!!

 So probably I will try to move to the IT part of Mozilla.

 7.- Anything else you may say?

 Nothing…Good luck!!! with your Master Thesis!!

B.3 Albert Astals, KDE

1.- Please introduce yourself and explain how and when did you start with libre software
translations.

 Hi, my name is Albert Astals Cid, I’m from L’Hospitalet de Llobregat in Spain. I have been
collaborating with the KDE project since 2002 when I started improving Catalan translations for
kdeutils, the KDE utilities package.

 2.- Which tools are available/recommended in the project to help translators? Which ones do
you use? (For example, there is a Pootle server but you usually download the PO file and
translate it offline).

 In KDE we recommend the usage of

Lokalize4
as a GUI editor for .po files but you can use any editor you want, we are not strict about that.
Besides that we have a script that each night processes all the code, creates/updates the
.pot files, and merges the existing .po translations with the new .pot files. We also have a
few additional scripts that run to ensure the validity of the translations like pology
sieves5 .
We also have a webpage http://l10n.kde.org where you can check the statistics of the
languages translates and serves as point of contact for the people that want to engage with the
team.

 3.- Is there a translation team in the project? Which are the revision processes? Do you focus
on revision or on translating the untranslated strings?

 KDE is a huge effort to translate so we actually have a “coordination” team and then one team per
language. Each language team has different processes/policies depending on much available manpower
they have.

 4.- Since you started to get involved in this project, did you increase your contributions to
libre software? (For example, translating more languages, doing other kind of contributions to
the project as bug reporting or programming code, or participating in other libre software
projects as translator...)

 Yes, since 2002 I’ve been involved in lots of other projects inside KDE as a developer and also
outside like poppler, to point in which I did not have time to translate anymore and stopped translating
around 2008.

 5.- Which are the benefits you perceive for contributing in libre software translations? Any
bad counterparts?

 As said, I’m not a translator anymore, but there was benefit huge benefit in increased knowledge of
the target language (in my case Catalan) when i was.

 6.- Which are your future plans?

 Conquer the world! Sorry. I should have not said that. I don’t really make plans, I just go
along.

 7.- Anything else you may say?

 I encourage anyone to try to translate to their native tongue. It is a really gratifying experience and
you will become much more proficient in it. And of course in KDE we are welcome to new translators
so pay us a visit!

B.4 Javier Taravilla, debian-l10n-es team

1.- Please introduce yourself and explain how and when did you start with libre software
translations.

 My name is Javier Taravilla, and started my translations in Free Software projects in Debian, driven
by the community or business practices of free software, necessary to complete the “Free Software
Master” of Libresoft.

 2.- Which tools are available/recommended in the project to help translators? Which ones do
you use? (For example, there is a Pootle server but you usually download the PO file and
translate it offline).

 In Debian l10n team, I translated the web. So, the tools that I needed and used, were simpler than
used people to translate .po files or deb-conf templates. The web sites I visited and used me for my
work were:

 	The robot coordinating translations: l10nbot@debian-es.org

 	The interface translation statistics:
 http://www.debian.org/devel/website/stats/es.html

 	Group’s mailing list: debian-l10n-spanish

 To translate I worked off-line and used gedit. But there are tools for translating strings like

“gtranslator” of GNOME, “KBabel” or “Lokalize” of KDE, which people from the list of Debian
used.

 3.- Is there a translation team in the project? Which are the revision processes? Do you focus
on revision or on translating the untranslated strings?

 Yes there is a team of volunteers who translated, reviewed and uploaded to the repositories the
translations approved.

 And for the translation and revision in Debian, using a key system for items such as [ITT], [RFR],
[ITR], [LCFC] or [DONE], corresponding to different phases in which a translation is from when you
start up that is uploaded to the CVS.

 	So when you decide to translate a PO file, debconf template or WML file, you have to
 send an email to the list, with the label [ITT] equivalent to “Intent To Translate”, marking
 that a file has been booked by a translator to update. That is, if you send an email with
 the subject “[ITT] wml://devel-manuals.wml” means that you will translate the WML file
 “devel-manuals”.

 	Then a few hours or days later when you have the translation, send an email with the subject
 [RFR], that means “Request For Review” which states that the translator has done his work with
 the file. In the mail you send the attachment, so that other translators can review
 and provide input. Normally, leave this file for 7 days, before moving to the next
 state. So would you send “[RFR] wml://devel-manuals.wml”, with the translated file
 attachment.

 	Other translators or yourself, can use the tag [ITR] “Intent To Review” to indicate
 interest to broaden the review time of a file. This is so that a file does not go to the
 next phase when the interest of time, size, or interest of the people on the list, the
 review can not be done in the usual deadlines.

 	“Last Chance For Comments” [LCFC] is the key which indicates that the translation is complete
 and the changes or contributions have been incorporated. So, that the file is ready to be sent to
 the person who upload it to CVS. It is advisable to leave it for another 3 days in this
 state and if no further input, advise for members with permission to include in the
 repository.

 	After all you send an email with the subject starting with [DONE] to note that the
 work is completed and implemented, or that the translation is abandoned whatever
 reason.

 Importantly, all these items and changes will be reflected automatically in the robot translation:
http://www.debian-es.org/cgi-bin/l10n.cgi?

 And all this is well detailed in: http://www.debian.org/international/spanish/robot

 Finally, I focused mainly on the translation of WML files, which are the ones that translates the
web. From time to time, or when requested by a translator, I also conducted reviews of wml and PO
files.

 4.- Since you started to get involved in this project, did you increase your contributions to
libre software? (For example, translating more languages, doing other kind of contributions to
the project as bug reporting or programming code, or participating in other libre software
projects as translator...)

 No, as a “contributor”, I have not participated in more free software projects. I promote it among
friends and acquaintances, or at work, and I defend and use, but I have not participated in more
projects, more than send some bug report.

 5.- Which are the benefits you perceive for contributing in libre software translations? Any
bad counterparts?

 The main benefit was the experience of actually participating in a community and knowledge of
other translators. The only counterpart might be the time, but it is not well understood, because it was
an investment in learning.

 6.- Which are your future plans?

 Back to actively participate in the list.

 7.- Anything else you may say?

 I encourage anyone interested in contributing and creating or knows he can not do as a code
developer, to participate in a community of translation.

Appendix C
Contributing to translations: a personal experience

 C.1 Introduction

In this appendix I explain my experience about contributing translations to Spanish of several libre
software projects. I list them in chronological order, covering a total of several years, different phases
of involvement, different tools used and also different levels of ’performance’, depending on each time
acquired skills to act as part of a libre software community. I hope the reader will find this story
interesting, specially if he or she is considering to get involved in any free software community as
translator, for the first time.

C.2 PHPScheduleIt and Drupal 5

I was in charge of selecting and developing a web-based room reservation system, in
order to handle my School’s computer labs timetable. I found that the free software
PHPScheduleIt1 ,
which consisted in a set of PHP scripts acting on a MySQL database, and it was as of version 1.2.8,
was suitable with small adaptations.

 In that time I knew that it was possible to modify the software by accessing the source code, and
we needed to ’tweak’ the system so the name for different things was different than the original
one (for example use ’lab’ instead of ’resource’) and fix some typos. I just find the file I
needed to modify by inspecting the folder structure of the PHP scripts of PHPScheduleit. I
opened the required file (es.help.php, in a folder called lang) with a text editor and
made my changes to the translation strings for Spanish, saved the file and the work was
finished.

 This was not exactly a translation work, but for example I fixed some typos in the translation file
and it would be nice to have contributed back to the community that fixes. But in that time I did not

know how to use control version systems, or submit a patch. I could have been subscribed to the main
mailing list and send the file as attachment, but in that moment I did not know that the projects
accepted easily external contributions without further involvement. We deployed the system with other
adaptations to the code, but as the original project evolved, we did not upgrade to the new
versions, because migrating our ’adaptations’ required too much development and maintenance
effort.

 In the same times, I completed the translation of Scheduler module for Drupal 5, since the Spanish
translation file was not completed. In this case the file was an es.po file but for me it made no
different than former one: it was a text file so I use a text editor to open and modify it. I imported the
new translation into my own Drupal site, but did not contributed back my translations to the
community.

What did I learn?

 	Thanks to the free software licenses and free access to the source code, if a program does
 not include a translation to your language or if it is not complete you can complete the
 translation yourself.

 	If you contribute your changes upstream, you benefit from further updates with less
 maintenance effort required, and the community also receives your improvements, so
 probably more people will contribute too and enrich the project.

 	However, in order to contribute your translations or patches, you need to know how the
 project works, who is in charge of i18n/l10n, and coordinate with other people, a task that
 involves time for learning and interacting with the community.

C.3 Drupal 7: contributing translations easily

Next time I deployed a Drupal site the stable version was Drupal 7. The deployed site was my School’s
website about libre software. That work was part of the Practicum of my M.Sc. on Libre
Software, so I already knew that it was important to engage with the community of the
software projects that you use or deploy in order to stay tunned about updates and also
participate or contribute your improvements. On the other side, Drupal 7 includes a completely
new localization platform, allowing to contribute translations in some different ways. I
joined the Spanish team by clicking “Join” in the Spanish team group under the website
http://localize.drupal.org, and used the web interface of that website to select the
modules that I wanted to translate and complete some pending translations. In addition
to this, I installed the localization modules in my Drupal site so I get a web interface for
translating the strings that are pending from the modules that I have installed for my site. It is a
very comfortable way of translating, since you already get your changes be integrated in
your local site, and with just clicking a button (“Update translations”) the strings that you
translated are sent to the Drupal localization site (they will wait in the moderation queue to be
approved), and you also download automatically the new approved translations that other
people contributed to the system. With this both system I got approved 187 translations for
Drupal2 .

What did I learn?

 	Having a web platform to ease the translation is really a great improvement in order to
 lower barriers to new contributors.

 	The Drupal system combines the needs of the end user to easily tweak the system and

 have their translations integrated in their production sites immediately (without waiting
 for approval and integration with upstream) and contribute your improvements to the
 whole community, also in an easy way.

 	However, moderation queue is the bottleneck of this system. A single English string may
 have multiple suggestions sent from translation modules in different Drupal sites, whose
 administrators have good intentions but did not read the rules, conventions and glossaries
 for their language team in Drupal.

C.4 Pleft

In 2011 the M.Sc. on libre software students decided to use a web-based appointment planner in order
to altogether decide a suitable date and time for a non-academic meeting called ’MSWL and
Beers’3 .
The initial suggested tool was privative software so I tried to find a free software alternative, and I found
Pleft4
which was developed by two students from Amsterdam.

 The tool was available in several languages, but not in Spanish. For MSWL students and teachers it
was not a problem, since all of us know English, but I liked the software and thought that I could
recommend it to other people or use it to arrange meetings with other friends that don’t know English,
so it could be a nice thing to have it in Spanish. The web based system is very visual and
has few text strings presented to the user so the translation could be done in a very short
time.

 The documentation in the Pleft website was explaining that I needed to join Transifex web

platform in order to contribute translations to the software. I created a Transifex account and
joined the Pleft team, requested the Spanish language using the Transifex platform. The
Transifex platform includes the possibility to send and receive messages to the projects
maintainers and receive email notifications when a message has arrived to your Transifex inbox. I
received a message welcoming me to the Pleft team and and approving the Spanish team.
It was not an automatic message, it was written by one of the Pleft developers, so I felt
really welcomed and go to translate the application to Spanish. I asked small questions
about the translation (format of dates) by the Transifex platform, and always got a quick
response. When the translation was finished I asked if there was a Pleft test site where I could
see and review my translations “in their context”. Pleft developers provided an URL for a
test site so I reviewed my own work and corrected and improved some strings. The Pleft
development team uploaded the translations to the production site some days later, and I
was happy for having Pleft in Spanish with little effort involved, and in a relatively short
time.

 Some days later, the Pleft admins asked me to translate some text for the promotion of the tool in
several websites. I didn’t use any tool to translate that texts, since they were plain texts, and not part of
the software.

 I was happy that I could translate a complete web based application without need of downloading
the source code, use a SCM or have to know how to send a patch, or other “development skills”, thanks
to Transifex.

 Some months later, I visited again the Pleft website and it was changed in two ways: a new version
was released, and the Spanish translation was gone. I read the Pleft blog and learned that the
development was moved from Google Code (a software forge) to GitHub (a different software forge). I
was not subscribed to the Pleft development mailing list (I thought it was not necessary for me,
since Transifex platform was managing all the communication needed for translators) so I
didn’t get the news about changing the forge. I went to GitHub, browsed the new version
source code, and saw that the localization files were three, while in Transifex there were
only two files, and their names and contents were different. So it looked clear that the new
version had a different architecture and the administrators had not updated the Transifex
project.

 There were two problems to solve. One of them was to translate the new version of the project to

Spanish. The other one was to update the connection between the project and the Transifex platform, if
the Pleft team was still using it to manage translations.

 For the first problem, in that time I already knew how to use git and GitHub, so I forked the project
to my GitHub account, cloned it to local, updated and reviewed the Spanish translation files. This time
I used Poedit, because I wanted to try that program, and with it it was very easy to unset the “fuzzy”
property to the machine-translated strings. I committed my changes to my local repository and
pushed them to my GitHub account. Then I asked for a “pull request” to the original project.
Since the “pull request” opens an issue in the issue tracker system, I commented about the
outdated translation files in Transifex and asked if they were willing to keep using Transifex or
not.

 I received a quick answer, the Pleft admins were not aware of the problem with Transifex, and they
did not know why it happened. I read the Transifex documentation and concluded that they (or
somebody with privileges) had to update the URL to the source code repository, which probably was
still pointing to Google code, and the project was not there anymore. I updated the issue with
this suggestion and got an answer that as soon as the Pleft administration are available the
issue was going to be fixed (both updating the translations and handle the problem with
Transifex)5 .

What did I learn?

 	Although you don’t participate in the project as a developer, it is useful to be subscribed
 to the main mailing list or project forum, in order to get updates about the roadmap or
 changes that may affect the translations.

 	If there is somebody in charge of internationalization, he or she could filter that
 information and coordinate with translators, so the translators don’t need to receive all

 the information and events related to the project which maybe are not of their interest.

 	Localize an application is more than translate the text strings presented to the user.
 Webpages with help, user manuals or marketing, advertisements are also needed to be
 translated.

C.5 F-Droid

The F-Droid Repository6
is an easily-installable catalog of FOSS (free, open source software) applications for the Android
platform. The server contains the details of multiple versions of each application, and the Android
client makes it easy to browse, install them onto your device, and keep track of updates. I began to use
this the F-Droid Android client in my smartphone and liked very much the project. But I saw that the
Spanish translation was not completed (some messages were showed in English). In addition to this,
the information of the Android applications listed in the repository was in English too.
This was an important handicap to spread the word about F-Droid in my family and friend
environments, since they use smartphones but they don’t know English, and on the other
side, the Google Play Store (the application repository that is installed by default in the
Android smartphones) is completely translated to Spanish, and most of its applications
too7

 I went to F-Droid website and looked for how to contribute with translations. They used a
web-based translation platform called Pootle. I already knew Transifex so I thought it was more or less
the same.

 I created an account in the F-Droid Pootle server and joined the Spanish team,
but I could not see the files that needed translation. Pootle has no built-in message
system and the F-Droid project uses forums as communication channels, so I opened
a thread in the development forum to ask about how to translate the pending strings
8. The
F-Droid administrator quickly answered my question updating the Pootle server so I could go and translate
the pending strings. I also asked about the correct place to coordinate between translators in order to contact
the previous translator to Spanish, and the F-Droid project leader created a forum for translation-specific
issues9 .
I also asked about translating the application descriptions to Spanish, which it seemed not be possible
in that moment, and got an answer explaining that the internationalization of that information
was under development. I tried to contact with the Spanish previous translator in order to
generate a more neutral-Spanish translation for F-Droid. He agreed with me so I updated
some strings in the Pootle server, that will be shipped in the next update of the F-Droid
client.

What did I learn?

 	As with previous experiences, quick response of the project manager or person in charge
 for internationalization was key to get me involved in the project as translator.

 	Having a web platform for translations is not enough. It is important to keep it up to
 date and ensure a communication channel between translators (specially when the project
 grows) and with the rest of the developers.

 	When the program is developed without taking into account all the possible components
 to be translated (that is, define the internationalization objects), later it is more
 complicated to carry out this task.

C.6 Android applications

Since I was an F-Droid user and had a free software repository at my hand, I decided to contribute to
Android free software community translating in my free time some applications that I was already
using in my smartphone.

C.6.1 Trolly and E-numbers

I am user of these two Android applications, and both of them are free software. I cloned the
repositories and created the Spanish strings.xml files and translated the applications with a text
editor. I was not sure about how to send a patch or a merge request to the original repositories (they
were hosted in Google Code and BitBucket forges, which they don’t have the “Pull request”
easy system as GitHub). So I opened an issue for each of them, attaching the translated
files10 .
Unfortunately, it seems that both applications are abandoned so I didn’t get answer for my requests.
How to proceed in this case? I can build my own binary with the Spanish translation and use myself
and distribute it directly to my friends. I can fork the project and maintain that fork which includes a
Spanish translation. I can try to contact the project leaders in order to know if they allow me to inherit
the project and manage it from now on. I am not sure about willing to get involved further
than as a translation to these applications, so I still did not make a decision about what to
do.

C.6.2 Speech Trainer

I am using this application too, and found it very useful in order to train my public talks or improve my
English pronunciation. The application was not in Spanish and it was hosted in GitHub. The first time
that I made the Spanish translation I was not sure about how GitHub works so I decided to download
the English template, modify it with a text editor so I got an Spanish localization file, and
open an issue in the GitHub Speech Trainer project attaching the file. The project manager
quickly updated the program and released a new version to the Android Market to let me
review my work. I downloaded the new version and tried, it was working well. I asked about
translating the information of the Android Market and we did it inside the issue tracker,
since that information was plain text and the developer had to include it “by hand” into the
system.

 I asked about translating the “Help” and “About” HTML files that were also part of the application.
That part was not internationalized but the Speech Trainer developer said that if I provide a
help_es.html and an about_es.html he could find the way to integrate them in the
program.

 Some time passed and I learned how to use GitHub, so I forked the application, clone it to local,
copy the help.html and about.html files and renamed them to help_es.html and
about_es.html, translated the text with a text editor, and saved my work. I committed my changes
to my local repository, pushed them to my GitHub fork, and issued a pull request to the original
repository. I updated the former issue in order to explain what did I did and link both issues, and my
changes were accepted soon.

 The complete story about the Spanish translation of Speech Trainer can be read here:
https://github.com/wrr/speech_trainer/issues/1.

What did I learn?

 	GitHub makes easy to contribute to a project.

 	Thanks to free software licenses, if a project is abandoned you still can make
 modifications or contributions, and give life to it again.

 	As I said before, translating the strings presented to the user sometimes is not enough,
 there is additional information to be internationalized and localized.

C.7 Future plans

 	Keep on maintaining the Spanish translations for the new versions of each program that I
 already translated.

 	Take a decision about what to do with the abandoned Android applications.

 	Contribute Spanish translations to other free software Android applications that I am
 using.

 	Get more involved in the F-Droid project, contributing to the internationalization of the
 application descriptions.

 	Contribute, if needed, to the Debian Administration Handbook translation (as I need to
 read the book anyway for improving my system administration skills at job).

 	Join the FSF Spanish translation team and contribute translations to the web pages, if
 needed.

 	Keep on blogging and studying about translations in free software.

 	Suggestions are welcome!

Appendix D
Mining for localization in libre software projects

In this Appendix, I will explain how the SCM logs of libre software project could be inspected or
mined in order to get information about the software. The libre software Tux Paint will be used as
example; a similar process may be applied to other programs.

D.1 General overview of the process

The source code history of certain libre software projects should be studied to try to find information
about internationalization and localization tasks. The process followed may have several
steps:

 	Clone the source code repository to local, to get the history of changes (SCM log).

 	Convert that log in a SQL database, using CVSanaly1
 tool [Car12].

 	Query the database to get the information needed, and present it in a comprehensive way.

D.1.1 Metrics to extract

In a summarized analysis to learn how localization is done, for each project, we could query its
database to obtain the following metrics:

 	Total number of files.

 	Total number of i18n files.

 	Total number of l10n files.

 	Total number of languages.

 	Total number of contributors.

 	For each contributor, total number of commits (changes), number of commits involving
 at least one localization file.

 We need to take into account the type of SCM. For example Tux Paint uses CVS and that CMS
stores only the identification of the contribution “actually” performing the commit for uploading
changes to the repository. Other projects may use for example Git where information about both the
committer and the real author may be stored.

D.2 SQL queries

Based on the table structure of a CVSAnalY database [Car12], and knowing that Tux Paint uses
gettext and PO catalogs, we can write the following SQL queries to obtain our metrics:

 Total number of files:

select count(⋆) from files;

 Total number of i18n files.

select ⋆ from files where file_name like '%.pot';

 Total number of l10n files.

select ⋆ from files where file_name like '%.po';

 Total number of languages.

select distinct(file_name) from files

where file_name like '%.po';

 Total number of contributors.

select count(⋆) from people;

 For each contributor, total number of commits (changes):

select people.id, name, count(⋆) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

group by scmlog.committer_id order by total_commits desc;

 Contributor and number of commits involving at least one internationalization file:

select people.id, name, count(⋆) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

and scmlog.id in

(Select distinct commit_id from actions_file_names

 where file_id in

 (select id from files where file_name like '%.pot'))

group by scmlog.committer_id order by total_commits desc;

 Contributor and number of commits involving at least one localization file:

select people.id, name, count(⋆) as total_commits

from people, scmlog

where people.id = scmlog.committer_id

and scmlog.id in

(Select distinct commit_id from actions_file_names

 where file_id in

 (select id from files where file_name like '%.po'))

group by scmlog.committer_id order by total_commits desc;

D.3 Results

The CVS source code management system stores a separate log for each module of the project (each
main folder of the tree structure). In Tux Paint we have several modules. In table D.1 there is a
summary of the file structure for each module.

 	
	
	
	
	
	
	

	 	 Tux Paint
 	 Stamps
 	 Website
 	 Config
 	 Music Magic
 	 Drawtext

	
	
	
	
	
	
	

	 Files 	 1817 	 12502 	 2727 	 182 	 43 	 506
	
	
	
	
	
	
	

	 i18n files 	 1 	 1 	 1 	 1 	 0 	 0

	
	
	
	
	
	
	

	 l10n files 	 158 	 77 	 85 	 46 	 0 	 0

	
	
	
	
	
	
	

	 Languages 	 103 	 70 	 85 	 44 	 0 	 0

	
	
	
	
	
	
	

	 Committers 	 32 	 19 	 11 	 15 	 1 	 2

	
	
	
	
	
	
	

	

 Table D.1: Some metrics in Tux Paint modules

 We can see that for each module there is only one internationalization file. This simple structure
probably is one of the key factors for Tux Paint to be translated to so many languages, since new
translators can easily learn what to do: touch only 4 files to get the whole application and the website
translated to one language.

 For the analysis of contributors and their commits on internationalization and localization files, we
have mined only the main Tux Paint module (results in Table D.3; for the sake of brevity only results
of contributors that changed localization files are presented). For a complete analysis of the whole
project, it would be necessary to mine each module and merge the results in only one table which takes
into account all the contributors.

 	
	
	
	
	

	 Committer Name
 	 Id 	 Total Commits
 	 Commits on i18n 	 Commits on l10n

	
	
	
	
	

	 1 	 wkendrick 	 8928 	 60
	 4422

	
	
	
	
	

	 2 	 huftis 	 1265 	 13
 	 944
	
	
	
	
	

	 3 	 vindaci 	 87 	 	 12

	
	
	
	
	

	 5 	 greendeath 	 4 	 	 4

	
	
	
	
	

	 6 	 songhuang 	 61 	 	 18

	
	
	
	
	

	 7 	 srtxg 	 139 	 	 129

	
	
	
	
	

	 12 	 jfriedl 	 4 	 	 3

	
	
	
	
	

	 13 	 kartik_m 	 18 	 	 15
	
	
	
	
	

	 14 	 ahven 	 4 	 	 4

	
	
	
	
	

	 15 	 terjeb 	 1 	 	 1

	
	
	
	
	

	 16 	 el_paso 	 8 	 	 5

	
	
	
	
	

	 18 	 dolphin6k 	 65 	 	 5

	
	
	
	
	

	 19 	 secretlondon 	 780 	 7
 	 585

	
	
	
	
	

	 20 	 perepujal 	 356 	 1
 	 121

	
	
	
	
	

	 24 	 jchion 	 17 	 	 15

	
	
	
	
	

	 25 	 cos 	 3 	 	 3

	
	
	
	
	

	 27 	 giasher 	 1 	 	 1

	
	
	
	
	

	 28 	 najmi_zabidi 	 6 	 	 6

	
	
	
	
	

	 29 	 smarquespt 	 2 	 	 2

	
	
	
	
	

	 31 	 xandruarmesto 	 6 	 	 6

	
	
	
	
	

	 32 	 friedelwolff 	 1 	 	 1

	
	
	
	
	

	

 Table D.2: Commits from translators in Tux Paint (main module)

 We can see that 21 out of 32 committers did changes on localization files. Most of the changes have
been performed by Bill Kendrick, the leader of the project, who is the person in charge of receiving the
translation files from people with no access to the repository.

 We can find that access privileges have been given to 9 contributors (greendeath, ahven, terjeb, cos,
giasher, najmi_zabidi , smarquespt , xandruarmesto and friedelwolff) that did changes only on
localization files; this may be a sign of the importance of localization on Tux Paint, and the natural
division of work that localization brings to any software project.

 It would be interesting for example to see the evolution of commits in time for each contributor, to
see if the last committers that came to the system are only contributing translations or getting involved
in development too. The evolution of commits of Bill Kendrick may also give us hints about
if he is still “centralizing” the management of the system, or if he is delegating in other
committers.

 We could also compare metrics between the languages that are “managed” under the Official
Pootle Website, and the languages that are translated “manually”, to see if there are significant
differences among them (for example, more people involved in its management, or updated more
frequently).

Bibliography

 [Ast12] Albert Astals. Presentation about kde. mswl case studies ii. Website, 2012.
 http://docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=7056.

 [Car12] GSyC LibreSoft (Universidad Rey Juan Carlos). Data analysis: Cvsanaly.
 Website, 2012.
 http://projects.libresoft.es/projects/cvsanaly.

 [CCfTTC12] South Africa; Department of Arts CTexT (Centre for Text Technology,
 North-West University) and South Africa Culture. Atshumato project.
 Website, 2012. http://autshumato.sourceforge.net/.

 [Com12] Creative Commons. About creative commons. Website, 2012.
 http://creativecommons.org/about.

 [Con10] World Wide Web

 Consortium. Questions and answers about internationalization. Website, 2010.
 http://www.w3.org/International/questions/qa-i18n.en.

 [Cor11] Gonçalo Cordeiro. Open source software in translator’s workbench.
 Tradumàtica: tecnologies de la traducció, 0(9), 2011.

 [CS08] M. Cánovas and R. Samson. Herramientas libres para la traducción en
 entornos MS Windows. pages 33 – 55, 2008.

 [CS12] Marcos Canovas and Richard Samson. Open source software in translator
 training. Tradumàtica: tecnologies de la traducció, 0(9), 2012.

 [Def08] Freedom Defined. Freedom defined. Website, 2008.
 http://www.freedomdefined.org.

 [End11] Rikki Endsley. Transifex: The gsoc project that translated
 itself in an international business. Linux.com Website, 2011.
 https://www.linux.com/news/enterprise/biz-enterprise/495159-transifex-the-gsoc-project-that-translated-itself-in-an-international-business.

 [FA11] Sílvia Flórez and Amparo Alcina. Free translation software catalog.
 Tradumàtica: tecnologies de la traducció, 0(9), 2011.

 [For10] Gil Forcada. Gnome localization update for q1 2012. Website, 2010.
 https://live.gnome.org/TranslationProject/Survey.

 [Foua] Free Software Foundation. Gnu general public license. Website.
 http://www.gnu.org/licenses/gpl.html.

 [Foub] Free Software Foundation. Gnu general public license, version 2. Website.
 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

 [Fouc] Free Software Foundation. Gnu project. Website.
 http://www.gnu.org.

 [Fou08] O. Díaz Fouces. Ferramentas livres para traduzir com GNU/Linux e Mac
 OS X. pages 57 – 73, 2008.

 [Fou10] Free Software Foundation. GNU Gettext.
 http://www.gnu.org/software/gettext/, 1998-2010. [Online;
 Updated: 2010/06/06; Accessed 2012/01/25].

 [Fou12a] Django Software Foundation. Django documentation. internationalization
 and localization. Website, 2012.
 https://docs.djangoproject.com/en/1.4/topics/i18n/.

 [Fou12b] The Free Software Foundation. The free software definition. gnu project.
 Web, 2012.

 [ftAoSISO08] Organization for the Advancement of Structured Information
 Standards (OASIS). Xliff version 1.2. oasis standard. Website, 2008.
 http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html.

 [ftAoSISO09] Organization
 for the Advancement of Structured Information Standards (OASIS). Open
 architecture for xml authoring and localization reference model (oaxal) tc wiki.
 Website, 2009. https://wiki.oasis-open.org/oaxal/.

 [Her11] Raphael Hertzog. People behind debian: Christian
 perrier, translation coordinator. Website, 2011.
 http://raphaelhertzog.com/2011/03/03/people-behind-debian-christian-perrier-translation-coordinator/.

 [Ini12] Open Source Initiative. About the open source initiative. Website, 2012.
 http://opensource.org/about.

 [KDE12] KDE. Localization. Website, 2012.
 http://techbase.kde.org/Localization.

 [Kov12] Petr Kovar. Gnome localization update for q1 2012. Website, 2012.
 http://blogs.gnome.org/pmkovar/2012/05/22/gnome-localization-update-for-q1-2012/.

 [Mat08] M. Mata. Formatos libres en traducción y localización. pages 75 – 122,
 2008.

 [MW11] Lucía Morado and Friedel Wolff. Bringing industry standards to open
 source localisers: a case study of virtaal. Tradumàtica: tecnologies de la
 traducció, 0(9), 2011.

 [new10] Gábor Hojtsy Drupal Newsletters Maintainer
 news. Drupal 7 coming, project, cvs and translation changes. Website, 2010.
 http://drupal.org/node/991166.

 [Par11] Cristina Gomis Parada. Free software localization within translation
 companies. Tradumàtica: tecnologies de la traducció, 0(9), 2011.

 [Per12a] Christian Perrier. Bubulle’s blog. Website, 2012.
 http://www.perrier.eu.org/weblog.

 [Per12b] Christian Perrier.
 Debian-installer language support, statistics and translators. Website, 2012.
 http://d-i.alioth.debian.org/doc/i18n/languages.html.

 [RR12] Laura Arjona Reina and Gregorio Robles. Mining for localization in
 android. In MSR 2012: Proceedings of the 2012 workshop on Mining software
 repositories, 2012.

 [Tra12] Transifex. Transifex help pages. Website, 2012.
 http://help.transifex.com/index.html.

 1http://l10n.kde.org/

 2http://www.debian.org/international/index.en.html

 3http://compgroups.net/comp.unix.solaris/History-of-gettext-et-al

 4http://wiki.openstack.org/Translations

 5http://developer.android.com/guide/topics/resources/localization.html

 6http://developer.android.com/resources/tutorials/localization/index.html

 7http://techbase.kde.org/Development/Tutorials/Localization/i18n_Build_Systems

 8http://pootle.locamotion.org/

 9http://transifex.net

 10http://l10n.gnome.org/

 11http://localize.drupal.org

 12http://www.poedit.net/

 13http://translate.sourceforge.net/wiki/virtaal

 14http://translate.sourceforge.net/wiki/pootle/

 15http://translate.sourceforge.net

 16translate.sourceforge.net

 17http://pology.nedohodnik.net/

 18For example, Jernej Simončič (Slovene Open Source developer) releases GIMP and GTK+ installers for Windows in
 English and in Slovene (http://sourceforge.net/projects/gimp-win/)

 19This is my own situation, see Appendix C

 1http://www.acoveo.com

 2http://www.icanlocalize.com

 3http://drupal.org/project/translation_management

 4http://wpml.org

 5http://corpus.mancomun.org/

 6http://autshumato.sourceforge.net/

 7As explained in section 1.1.3 this is not a completely “free culture work” but allows quite more freedoms to the
 receiver than traditional copyright application

 1Christian Perrier, the Debian translations coordinator, has recently alerted about this situation to the Debian
 community, with his message “Please consider stopping uploads with *uncoordinated* changes to debconf
 templates before the release” to the development, release, internationalization, and English localization lists
 http://lists.debian.org/debian-i18n/2012/06/msg00046.html

 2An interesting initiative to try to help solve this problem is the Open Tran project (http://open-tran.eu/), a
 website that gathers the localization files of 10 big software projects (KDE , GNOME, OpenOffice, openSuSE,
 Mandriva, Fedora, Mozilla, XFCE, Inkscape and the Debian installer) in more than 100 languages, creating a
 searchable translation memory where the translator can see how a certain term is translated in those “reference”
 projects.

 1https://wiki.linuxfoundation.org/en/OpenI18N

 2http://www.gnu.org/software/gettext/manual/gettext.htm

 3http://www.poedit.net/

 4http://translate.sourceforge.net/wiki/virtaal

 5http://projects.gnome.org/gtranslator

 6http://l10n.kde.org

 7Ohloh is a public directory of Free and Open Source Software and the contributors who create and maintain it. It
 belongs to BlackDuck Software (a consultant company dedicated to Open Source Software), and offers data about the
 projects in its directory taken by analyzing their source code and SCM logs, and gathering opinions from the users in the
 website.

 8http://wordpress.org/extend/plugins/codestyling-localization/

 9http://translate.sourceforge.net/wiki/pootle

 10http://weblate.org/

 11https://translations.launchpad.net/

 12As explained in section 1.1.2, it is a permissive libre software license, in which the four freedoms are stated and not
 additional conditions are imposed to the user

 13http://drupal.org

 14http://gnome.org

 15http://kde.org

 16http://www.debian.org

 17Although it is recommended that all the translation issues related to non-specific Debian packages should be
 submitted to upstream projects, we can consider several exceptions, for example packages that are substantially
 modified from the original source code prior to include them in the Debian distribution. Some of them are the
 Mozilla suite of applications (Firefox web browser which becomes “Iceweasel” in Debian, Thunderbird
 email client that ships as “Icedove”, Lightning calendar as Iceowl, and others). Due to this modification,
 additional localization packages are created and maintained (or not) by the Debian community. This means
 that you can find the original program translated to certain languages, but not the related Debian package
 (an example of this is Iceowl, with no translation to Spanish, although the upstream Lightning has Spanish
 localization).

 18http://www.tuxpaint.org

 19http://www.tuxpaint.org/developers

 20http://www.pleft.com

 1http://www.ted.com/pages/287

 2http://meta.wikimedia.org/wiki/Translation

 1http://www.openbsd.org/translation.html

 2http://svn.savannah.gnu.org/viewvc/trunk/nano/THANKS?revision=693&root=nano&view=markup

 3http://svn.savannah.gnu.org/viewvc/trunk/nano/po/ca.po?revision=547&root=nano&view=markup

 4http://userbase.kde.org/Lokalize

 5http://techbase.kde.org/Localization/Tools/Pology

 1http://www.php.brickhost.com/

 2http://localize.drupal.org/user/166874

 3http://docencia.etsit.urjc.es/moodle/mod/forum/discuss.php?d=12867

 4http://www.pleft.com

 5https://github.com/sander/pleft/pull/46

 6http://fdroid.org

 7Many of this Google Play Store application descriptions are machine translation with a poor quality, but a Spanish
 speaking person is at least able to figure out what each application does.

 8http://f-droid.org/forums/topic/contribute-to-translations-in-pootle/

 9http://f-droid.org/forums/topic/how-to-coordinate-between-translators/

 10https://bitbucket.org/uaraven/enumbers/issue/3/ for E-Numbers and
 http://code.google.com/p/trolly/issues/detail?id=19 for Trolly

 1CVSAnalY cvsanaly is a tool that extracts information out of source code repository logs and stores it into a
 database.

gettext.png
Original C Sources —> Preparation —> Marked C Sources —

[—————<— GNU gettext Library

nake
PACKAGE .pot xgettext PO Conpendium
'
PO editor
nsgnerge > LANG.po
New LANG.po
LANG..gno nsgfnt
L install —> /.../LANG/PACKAGE .o —
| “Hello worldi®

> install 7

/bin/PROGRAN

comparisoneditors.png
@ o @] gwansisor & Lokaize

General
i Jes— fEa— —
. e anaon annzo

Al Time Activity
[se— pr— P Pr—

12 Month Activity
- prr— Frre— S ssmsn

po_poedit.png

virtaal.png

ScenarioLocalization.png
Scenario for Localization

Libre software

S emiger a0 s s v
LT e v s

Propristary Software

Devsoar s rasiaons
U gt sesar o e entns

OAXAL_l10n_workflow.jpg
S Translate
Document

logo.png

pootle1.png

pootle2.png
e e

B

cover.jpeg

pootle_l10n.png
@ Pootle 2.1.6

Vista generat | netion

s i sho ooy e .

110 idiomas, 58% traducido

transifexpricing.png
Transi

d Free' ¥

@i () NOKIA @redu GER. django

weblate.png
phpMyAdmin/documentation - Greek @ I10n.cihar.com

Transiate

[————

[T s R———
ot . ot H Aot <
[P R———— \

Transiation context

e e .

LP-translation-stats.png
Template "transmission" in Ubuntu Karmic package “transmission”
Language | Status Untransiated Need review Changed Last Edited By

Cotan —2 - 2 20000924 joan Duran
[Choose preferred Languages.. — View Template & Al Langusges..|
raniation unchanged sice last synehronized

Changed Launchpad

ey transiatd i aunchpad

iAo

launchpad_suggestions.png
OpenShot Video Editor
vervew Code Bugs Suepries | ETENRY e

Translatlng |nto Turkish

Tempie cpenshorskeh)

¥ Downloadransiation @ Uploadiransiton @ Transaton detals
@ Reviewer mode (what's this?)

Trastatig [allzems pE) £Jas. uice. change!
1o reat
@ 20 English: () wring:

Current Turkish: © (no transation yet)

© uyant
UsedinpinOper€sp dons .1y e Mgk on 20120124
©uyan
Usedinbascmesagesi itk by et VAZ e 2009310
© oikkatt

SugpestedincrminOpenEAP Addons oy Otge ek sn 20110216

Someane should review this

debianhandbook.png
Contribute to the project
i, ek you g s o el A .
i o o ety

Translatethe book.
oy ety .y g st o ot
ncebin e,y b b e ok et b e e e B e

ot e oy

e okt e READAL s e s e st e ek s i -
D e ot A s, 4T et 5 s o

A —

e
+ s m
vy

6D s e)T L. e g .50, o

e
iy

nees
- st

pleft.png
Pleft / Resources / Pleftappdlient

